DGtal  0.9.4beta
arithmetic/convergents-biginteger.cpp

Computes the quotients and the convergents of a given fraction, which may be arbitrarily large.

See also
Instantiating fractions
# A huge fraction
$ ./examples/arithmetic/convergents-biginteger 243224233245235253407096734543059 4324213412343432913758138673203834
z = [0,17,1,3,1,1,12,1,2,33,2,1,1,1,1,49,1,1,1,1,17,34,1,1,304,1,2,1,1,1,2,1,48,1,20,2,3,5,1,1,16,9,1,1,5,1,2,2,7,4,3,1,7,1,1,17,1,1,29,1,12,2,5]
z_0 = 0 / 1
z_1 = 1 / 17
z_2 = 1 / 18
z_3 = 4 / 71
z_4 = 5 / 89
...
z_18 = 23610961 / 419772458
...
z_40 = 832739221613445323225 / 14805030169237188131024
...
z_62 = 243224233245235253407096734543059 / 4324213412343432913758138673203834
#include <iostream>
#include "DGtal/arithmetic/LighterSternBrocot.h"
using namespace DGtal;
void usage( int, char** argv )
{
std::cerr << "Usage: " << argv[ 0 ] << " <p> <q>" << std::endl;
std::cerr << "\t - computes the successive convergent of the fraction p / q." << std::endl;
}
int main( int argc, char** argv )
{
if ( argc < 3 )
{
usage( argc, argv );
return 1;
}
std::string inputP = argv[ 1 ];
std::string inputQ = argv[ 2 ];
typedef DGtal::int64_t Quotient;
typedef LighterSternBrocot<Integer, Quotient, StdMapRebinder> SB; // the type of the Stern-Brocot tree
typedef SB::Fraction Fraction; // the type for fractions
typedef Fraction::ConstIterator ConstIterator; // the iterator type for visiting quotients
typedef Fraction::Value Value; // the value of the iterator, a pair (quotient,depth).
Integer p( inputP );
Integer q( inputQ );
Fraction f( p, q ); // fraction p/q
// Visit quotients u_k as pair (u_k,k)
std::cout << "z = ";
ConstIterator itbegin = f.begin(), itend = f.end();
for ( ConstIterator it = itbegin; it != itend; ++it )
{
Value u = *it;
std::cout << ( ( it == itbegin ) ? "[" : "," )
<< u.first;
}
std::cout << "]" << std::endl;
Fraction g; // fraction null, 0/0, invalid
for ( ConstIterator it = itbegin; it != itend; ++it )
{
Value u = *it;
std::cout << "z_" << u.second << " = ";
g.push_back( u ); // add (u_i,i) to existing fractions
std::cout << g.p() << " / " << g.q() << std::endl;
}
return 0;
}