DGtal  0.9.3beta
arithmetic/extended-euclid.cpp

Computes a solution to the diophantine equation $$ax+by=c$$, where the integers a, b, c are given and x, y are the unknowns (integers). Note that c must be a multiple of gcd( a, b ).

More elaborate computations with integers
$./examples/arithmetic/extended-euclid 5 7 1 x=3 y=-2$ ./examples/arithmetic/extended-euclid 12 32 4
x=3 y=-1

#include <cstdlib>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <string>
#include "DGtal/arithmetic/IntegerComputer.h"
using namespace DGtal;
void usage( int, char** argv )
{
std::cerr << "Usage: " << argv[ 0 ] << " <a> <b> <c>" << std::endl;
std::cerr << "\t - solves the diophantine equation ax+by=c by the extended Euclid algorithm." << std::endl;
std::cerr << "\t - note: c should be a multiple of gcd(a,b)." << std::endl;
}
int main( int argc, char** argv )
{
if ( argc < 4 )
{
usage( argc, argv );
return 0;
}
Integer a( argv[ 1 ] );
Integer b( argv[ 2 ] );
Integer c( argv[ 3 ] );
IC ic;
Integer g = ic.gcd( a, b );
if ( ic.isZero( a ) || ic.isZero( b ) )
{
std::cerr << "[Error] parameters a and b should be non-null." << std::endl;
return 1;
}
if ( ic.isNotZero( c % g ) )
{
std::cerr << "[Error] parameter c should be a multiple of gcd(a,b)." << std::endl;
return 2;
}
IC::Vector2I X = ic.extendedEuclid( a, b, c );
std::cout << "x=" << X[ 0 ] << " y=" << X[ 1 ] << std::endl;
Integer d = a*X[ 0 ] + b*X[ 1 ];
if ( c != d )
{
std::cerr << "[Internal Error] Output of extended Euclid algorithm is incorrect: " << d << " != " << c
<< ". This should not happen." << std::endl;
return 3;
}
return 0;
}