DGtal  0.9.4beta
Public Types | Static Public Member Functions
DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc > Class Template Reference

#include <DGtal/math/MPolynomial.h>

Public Types

typedef MPolynomial< n, Ring, Alloc > MPolyN
 

Static Public Member Functions

static void computeDerivative (const MPolyN &src, MPolyN &dest)
 

Detailed Description

template<int N, int n, typename Ring, typename Alloc>
class DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >

Utility class for computing the derivative of a given polynomial with respect to the N-th indeterminate, N > 0. Uses MPolynomialDerivativeComputer<N-1, n-1, T, Alloc> to partially derive the coefficients of the first indeterminate.

Template Parameters
Nthe variable used for derivation.
nthe number of variables or indeterminates.
Ringthe type chosen for the polynomial, defines also the type of the coefficents (generally int, float or double).
Allocis an allocator for Ring, for example std::allocator<Ring>; this is also the default parameter. Usually this parameter does not needs to be changed.

This class is a backport from Spielwiese.

Definition at line 61 of file MPolynomial.h.

Member Typedef Documentation

template<int N, int n, typename Ring , typename Alloc >
typedef MPolynomial<n, Ring, Alloc> DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >::MPolyN

Type for polynomial with n variable in the ring Ring.

Definition at line 1891 of file MPolynomial.h.

Member Function Documentation

template<int N, int n, typename Ring , typename Alloc >
static void DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >::computeDerivative ( const MPolyN src,
MPolyN dest 
)
inlinestatic

Computes the derivative of src with respect to X_N and puts it in dest.

Parameters
srcany polynomial
dest(returns) the polynomial d/dX_N(src).

Definition at line 1901 of file MPolynomial.h.

References DGtal::MPolynomial< n, TRing, TAlloc >::degree(), DGtal::MPolynomial< n, TRing, TAlloc >::myValue, and DGtal::MPolynomial< n, TRing, TAlloc >::normalize().

Referenced by DGtal::derivative().

1902  {
1903  dest.myValue.resize(src.degree() + 1);
1904  for ( int i = 0; i <= src.degree(); ++i )
1905  MPolynomialDerivativeComputer<N - 1, n - 1, Ring, Alloc>
1906  ::computeDerivative( src[i], dest[i] );
1907  dest.normalize();
1908  }
static void computeDerivative(const MPolyN &src, MPolyN &dest)
Definition: MPolynomial.h:1901

The documentation for this class was generated from the following file: