DGtal  0.9.3beta

This example outputs the cover of an open digital curve by maximal DSSs. Maximal DSSs are displayed in blue, green, yellow in convex, concave, inflexion parts respectively. Ends are black. Convex (resp. concave) parts are defined as sequences of maximal DSSs of increasing (resp. decreasing) slope.

$ ./examples/geometry/curves/convex-and-concave-parts

Note that the chain code of the input digital curve may be passed as argument as follows:

$ ./examples/geometry/curves/convex-and-concave-parts 0300303303033030303000010101011010110100000303303033030303
Decomposition into convex and concave parts
See also
Digital straight lines and segments and Analysis of one-dimensional discrete structures
#include <cmath>
#include <iostream>
#include <sstream>
#include <fstream>
#include "DGtal/base/Common.h"
#include "DGtal/io/boards/Board2D.h"
#include "DGtal/io/Color.h"
#include "DGtal/shapes/Shapes.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/geometry/curves/ArithmeticalDSSComputer.h"
#include "DGtal/geometry/curves/FreemanChain.h"
#include "DGtal/geometry/curves/SaturatedSegmentation.h"
#include "ConfigExamples.h"
using namespace std;
using namespace DGtal;
using namespace Z2i;
template <typename Iterator, typename Board>
void drawCCP(const Iterator& itb, const Iterator& ite, Board& aBoard)
//choose the drawing mode
aBoard << SetMode( "ArithmeticalDSS", "BoundingBox" );
//prepare the drawing style and the pen color
string aStyleName = "ArithmeticalDSS/BoundingBox";
CustomPenColor* aPenColor;
//for each maximal segment
for (Iterator i(itb); i != ite; ++i) {
//get the current maximal segment
typedef typename Iterator::SegmentComputer::Primitive DSS;
DSS maximalDSS = i->primitive();
//if located at the end of a connected part
if ( !(i.intersectNext() && i.intersectPrevious()) ) {
aPenColor = new CustomPenColor( Color::Black );
} else {
//get the points located before and after the maximal segment
typedef typename DSS::Point Point;
Point beforeFirst = *(--(i->begin()));
Point afterLast = *(i->end());
//remainders and bounds
typedef typename DSS::Integer Integer;
Integer r1 = maximalDSS.remainder(beforeFirst);
Integer r2 = maximalDSS.remainder(afterLast);
Integer mu = maximalDSS.mu();
Integer omega = maximalDSS.omega();
if ( (r1<=mu-1)&&(r2<=mu-1) ) { //concave
aPenColor = new CustomPenColor( Color::Green);
} else if ( (r1>=mu+omega)&&(r2>=mu+omega) ) { //convex
aPenColor = new CustomPenColor( Color::Blue );
} else if ( (r1>=mu+omega)&&(r2<=mu-1) ) { //convex to concave
aPenColor = new CustomPenColor( Color::Yellow );
} else if ( (r1<=mu-1)&&(r2>=mu+omega) ) { //concave to convex
aPenColor = new CustomPenColor( Color::Yellow );
} else { //pb
aPenColor = new CustomPenColor( Color::Red );
// draw the maximal segment on the board
aBoard << CustomStyle( aStyleName, aPenColor )
<< maximalDSS;
template <typename Iterator, typename Board>
void segmentationIntoMaximalDSSs(const Iterator& itb, const Iterator& ite,
Board& aBoard)
//choose the primitive computer and the segmentation
typedef ArithmeticalDSSComputer<Iterator,Coordinate,4> RecognitionAlgorithm;
//create the segmentation
RecognitionAlgorithm algo;
Segmentation s(itb,ite,algo);
//draw the result
drawCCP(s.begin(), s.end(), aBoard);
int main( int argc, char** argv )
trace.beginBlock ( "Example convex-and-concave-parts" );
Board2D aBoard; //create a board
//create a chain code
string codes;
if (argc >= 2) codes = argv[1];
else codes = "030030330303303030300001010101101011010000030330303303030300001010110101011010000033";
stringstream ss(stringstream::in | stringstream::out);
ss << "0 0 " << codes << endl;
FreemanChain<int> theContour( ss );
trace.info() << "Processing of " << ss.str() << endl;
//draw the digital contour
<< SetMode( "PointVector", "Grid" )
<< theContour;
//draw the maximal segments
segmentationIntoMaximalDSSs(theContour.begin(), theContour.end(), aBoard);
//save the drawing
return 0;
// //