DGtal  0.9.4beta
geometry/curves/exampleArithmeticalDSL.cpp

This example

• shows the basic usage of a naive/standard DSL,
• displays the steps of a DSL for all octants.
Digital straight lines and segments
#include <iostream>
#include <sstream>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/io/boards/Board2D.h"
#include "DGtal/geometry/curves/ArithmeticalDSL.h"
using namespace std;
using namespace DGtal;
void exampleNaiveDSL()
{
trace.beginBlock ( "Naive DSL" );
using namespace Z2i;
// Construct a naive DSL from a, b, mu
NaiveDSL<Integer> line( 2, 5, 0 );
// Trace to the standard output
// the two representations
// corresponding to the same set of points
trace.info() << line << line.negate();
// Construct a (rectangular) domain
Point bottomLeft( 0, 0 );
Point topRight( 10, 5 );
Domain domain( bottomLeft, topRight );
// Display the DSL points within the domain with Board2D
Board2D board;
Point firstPoint( bottomLeft[0], (line.a()*bottomLeft[0]/line.b()) );
Point lastPoint( topRight[0], (line.a()*topRight[0]/line.b()) );
// Draw the DSL points between firstPoint and lastPoint
it = line.begin(firstPoint),
ite = line.end(lastPoint);
it != ite; ++it )
{
board << SetMode( it->className(), "Paving" )
<< *it; //Draw the point
}
// Draw the grid
board << SetMode(domain.className(), "Grid")
<< domain;
// Draw the orthonormal base
board.drawArrow(0.0, 0.0, 1.0, 0.0);
board.drawArrow(0.0, 0.0, 0.0, 1.0);
// Save
board.saveSVG("NaiveDSL.svg");
#ifdef WITH_CAIRO
board.saveCairo("NaiveDSL.png", Board2D::CairoPNG);
#endif
}
void exampleStandardDSL()
{
trace.beginBlock ( "Standard DSL" );
using namespace Z2i;
// Construct a standard DSL from a, b, mu
StandardDSL<Integer> line( 2, 5, 0 );
// Trace to the standard output
// the two representations
// corresponding to the same set of points
trace.info() << line << line.negate();
// Construct a (rectangular) domain
Point bottomLeft( 0, 0 );
Point topRight( 10, 5 );
Domain domain( bottomLeft, topRight );
// Display the DSL points within the domain with Board2D
Board2D board;
Point firstPoint( bottomLeft[0], (line.a()*bottomLeft[0]/line.b()) );
Point lastPoint( topRight[0], (line.a()*topRight[0]/line.b()) );
// Draw the DSL points between firstPoint and lastPoint
it = line.begin(firstPoint),
ite = line.end(lastPoint);
it != ite; ++it )
{
board << SetMode( it->className(), "Paving" )
<< *it; //Draw the point
}
// Draw the grid
board << SetMode(domain.className(), "Grid")
<< domain;
// Draw the orthonormal base
board.drawArrow(0.0, 0.0, 1.0, 0.0);
board.drawArrow(0.0, 0.0, 0.0, 1.0);
// Save
board.saveSVG("StandardDSL.svg");
#ifdef WITH_CAIRO
board.saveCairo("StandardDSL.png", Board2D::CairoPNG);
#endif
}
template<typename DSL>
void drawArithmeticalDSL(typename DSL::Integer a,
typename DSL::Integer b,
unsigned short octant,
unsigned int n)
{
std::stringstream ssTitle;
ssTitle << " Arithmetical DSL "
<< "(" << a << ", " << b << ", 0)"
<< " in octant " << octant;
trace.beginBlock ( ssTitle.str().c_str() );
using namespace Z2i;
// Construct the DSL to draw
DSL line( a, b, 0 );
// Vectors to draw
Vector v = line.steps().first;
Vector w = line.steps().second;
Vector s = line.shift();
// Display the DSL points within the domain with Board2D
Board2D board;
// Draw the DSL points of the DSS
typename DSL::ConstIterator it;
it = line.begin( Point(0,0) );
unsigned int c;
for (c = 0; c < n; ++it, ++c )
{
Point p = *it;
// Draw the point
board << SetMode( p.className(), "Paving" )
<< p;
}
// Construct the domain
Point topRight, bottomLeft;
Point firstPoint(0,0);
Point lastPoint = *it;
if (b > 0)
{
if (a > 0)
{
bottomLeft = firstPoint;
topRight = lastPoint;
}
else
{
bottomLeft = Point( firstPoint[0], lastPoint[1] );
topRight = Point( lastPoint[0], firstPoint[1] );
}
}
else
{
if (a > 0)
{
bottomLeft = Point( lastPoint[0], firstPoint[1] );
topRight = Point( firstPoint[0], lastPoint[1] );
}
else
{
bottomLeft = lastPoint;
topRight = firstPoint;
}
}
Domain domain( bottomLeft, topRight );
// Draw the vectors
it = line.begin( Point(0,0) );
for (c = 0; c < n; ++c )
{
Point p = *it;
// Draw the shift vector
if ( line.remainder( p ) == line.mu() )
{
board.setPenColorRGBi(250, 0, 0);
board.drawArrow(p[0], p[1], p[0]+s[0], p[1]+s[1]);
}
// Draw the steps
++it;
if (c < (n-1))
{
Point q = *it;
if ( (q-p) == v )
board.setPenColorRGBi(0, 0, 250);
else if ( (q-p) == w )
board.setPenColorRGBi(0, 250, 0);
else
board.setPenColorRGBi(0, 0, 0);
board.drawArrow(p[0], p[1], q[0], q[1]);
}
}
// Draw the grid
board << SetMode(domain.className(), "Grid")
<< domain;
// Draw the orthonormal base
board.setPenColorRGBi(0, 0, 0);
board.drawArrow(0.0, 0.0, 1.0, 0.0);
board.drawArrow(0.0, 0.0, 0.0, 1.0);
// Save
std::stringstream ssFileName;
ssFileName << "ArithmeticalDSL"
<< "-" << octant
<< "-" << a << "-" << b
<< ".png";
#ifdef WITH_CAIRO
board.saveCairo(ssFileName.str().c_str(), Board2D::CairoPNG);
#endif
}
void exampleArithmeticalDSLOctant()
{
using namespace Z2i;
drawArithmeticalDSL<NaiveDSL<Integer> >( 0, 1, 0, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 5, 8, 0, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 1, 1, 1, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 8, 5, 1, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 1, 0, 2, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 8, -5, 2, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 1, -1, 3, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 5, -8, 3, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( 0, -1, 4, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -5, -8, 4, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -1, -1, 5, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -8, -5, 5, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -1, 0, 6, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -8, 5, 6, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -1, 1, 7, 15 );
drawArithmeticalDSL<NaiveDSL<Integer> >( -5, 8, 7, 15 );
drawArithmeticalDSL<StandardDSL<Integer> >( 0, 1, 0, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 5, 8, 0, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 1, 1, 1, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 8, 5, 1, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 1, 0, 2, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 8, -5, 2, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 1, -1, 3, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 5, -8, 3, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( 0, -1, 4, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -5, -8, 4, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -1, -1, 5, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -8, -5, 5, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -1, 0, 6, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -8, 5, 6, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -1, 1, 7, 21 );
drawArithmeticalDSL<StandardDSL<Integer> >( -5, 8, 7, 21 );
}
void exampleArithmeticalDSLTypes()
{
trace.beginBlock ( "Naive DSLs" );
// // Do not use the default type for the intercepts !
// NaiveDSL<DGtal::int16_t> line1( 17711, 28657, 1607895256 );
// //NB: 1 607 895 256 is not representable by the type DGtal::int16_t,
// //even if it is the remainder of the point (32 767,-32 767)
// //whose coordinates are representable by the type DGtal::int16_t
// trace.info() << line1; //KO
NaiveDSL<DGtal::int16_t, DGtal::int32_t> line2( 17711, 28657, 1607895256 );
//NB: 1 607 895 256 is the remainder of the point (32 767,-32 767),
//whose coordinates are representable by the type DGtal::int16_t
trace.info() << line2 << line2.isValid(); //ok
}
int main( int argc, char** argv )
{
trace.beginBlock ( "Example exampleArithmeticalDSL" );
trace.info() << "Args:";
for ( int i = 0; i < argc; ++i )
trace.info() << " " << argv[ i ];
trace.info() << endl;
exampleNaiveDSL();
exampleStandardDSL();
exampleArithmeticalDSLOctant();
exampleArithmeticalDSLTypes();
return 0;
}
// //