DGtal  0.9.3beta
topology/ctopo-1-3d.cpp

A simple example of cellular grid space with several cells instantiated and visualized in 3D. This program outputs this image.

See also
Cells may be unsigned or signed
ctopo-1b-3d.png
#include <iostream>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/io/DrawWithDisplay3DModifier.h"
#include "DGtal/io/viewers/Viewer3D.h"
using namespace std;
using namespace DGtal;
using namespace DGtal::Z3i;
int main( int argc, char** argv )
{
// for 3D display with Viewer3D
QApplication application(argc,argv);
KSpace K;
Point plow(0,0,0);
Point pup(3,3,2);
Domain domain( plow, pup );
K.init( plow, pup, true );
//
MyViewer viewer(K);
viewer.show();
viewer << SetMode3D( domain.className(), "Paving" );
Cell ptlow = K.uPointel( plow ); // pointel (0*2,0*2, 0*2)
Cell ptup1 = K.uPointel( pup ); // pointel (3*2,3*2, 2*2)
Cell ptup2 = K.uTranslation( ptup1, Point::diagonal() ); // pointel (4*2, 4*2, 3*2)
viewer << ptlow << ptup1 << ptup2;
// drawing cells of dimension 0
Cell p1= K.uCell(Point(0,0,2)); // pointel (0*2,0*2,2*2)
Cell p2= K.uCell(Point(0,2,2)); // ...
Cell p3= K.uCell(Point(2,2,2));
Cell p4= K.uCell(Point(2,0,2));
Cell p5= K.uCell(Point(0,0,4));
Cell p6= K.uCell(Point(0,2,4));
Cell p7= K.uCell(Point(2,2,4));
Cell p8= K.uCell(Point(2,0,4));
viewer << p1 << p2 << p3 << p4 << p5 << p6 << p7 << p8;
// drawing Cells of dimension 1
Cell linel0 = K.uCell( Point( 1, 0, 2 ) ); // linel (2*1+1, 0, 2*2)
Cell linel1 = K.uCell( Point( 1, 2, 2 ) ); // ...
Cell linel2 = K.uCell( Point( 0, 1, 2 ) );
Cell linel3 = K.uCell( Point( 2, 1, 2 ) );
Cell linel4 = K.uCell( Point( 1, 0, 4 ) );
Cell linel5 = K.uCell( Point( 1, 2, 4 ) );
Cell linel6 = K.uCell( Point( 0, 1, 4 ) );
Cell linel7 = K.uCell( Point( 2, 1, 4 ) );
Cell linel8 = K.uCell( Point( 0, 0, 3 ) );
Cell linel9 = K.uCell( Point( 0, 2, 3 ) );
Cell linel10 = K.uCell( Point( 2, 0, 3 ) );
Cell linel11 = K.uCell( Point( 2, 2, 3 ) );
Cell linel12 = K.uCell( Point( 3, 2, 2 ) );
viewer << linel0<< linel1<< linel2 << linel3 ;
viewer << linel4<< linel5<< linel6 << linel7 ;
viewer << linel8<< linel9<< linel10 << linel11 << linel12;
// drawing cells of dimension 2
Cell surfelA = K.uCell( Point( 2, 1, 3 ) ); // surfel (2*2,2*1+1,2*3+1)
Cell surfelB = K.uCell( Point( 1, 0, 1 ) ); // surfel (2*1,2*0,2*1+1)
Cell surfelC = K.uCell( Point( 2, 1, 1 ) ); // surfel (2*2,2*1+1,2*1+1)
viewer << surfelA << surfelB << surfelC;
// drawing cells of dimension 3
Cell vox1 = K.uCell( Point( 3, 3, 3 ) ); // voxel (2*3+1,2*3+1,2*3+1)
Cell vox2 = K.uCell( Point( 1, 1, 3 ) ); // voxel (2*1+1,2*1+1,2*3+1)
viewer << vox1 << vox2;
return application.exec();
}