This example shows the computation of the VCM of a digital surface read from a .vol file. The normal is estimated from the diagonalization of the VCM tensor, while the orientation is deduced from the orientation of the trivial surfel normals. Feature detection is achieved with the eigenvalues of the VCM. A red color indicates a feature. Normals are displayed as black lines.
#include <iostream>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/kernel/BasicPointPredicates.h"
#include "DGtal/math/linalg/EigenDecomposition.h"
#include "DGtal/topology/helpers/Surfaces.h"
#include "DGtal/topology/DigitalSurface.h"
#include "DGtal/topology/ImplicitDigitalSurface.h"
#include "DGtal/images/ImageSelector.h"
#include "DGtal/images/IntervalForegroundPredicate.h"
#include "DGtal/geometry/volumes/distance/ExactPredicateLpSeparableMetric.h"
#include "DGtal/geometry/surfaces/estimation/VoronoiCovarianceMeasureOnDigitalSurface.h"
#include "DGtal/io/colormaps/GradientColorMap.h"
#include "DGtal/io/viewers/Viewer3D.h"
#include "DGtal/io/readers/GenericReader.h"
#include "ConfigExamples.h"
int main(
int argc,
char** argv )
{
QApplication application(argc,argv);
typedef KSpace::Surfel Surfel;
KernelFunction > VCMOnSurface;
typedef VCMOnSurface::Surfel2Normals::const_iterator S2NConstIterator;
string inputFilename = examplesPath + "samples/Al.100.vol";
trace.
info() <<
"File = " << inputFilename << std::endl;
int thresholdMin = 0;
trace.
info() <<
"Min image thres. = " << thresholdMin << std::endl;
int thresholdMax = 1;
trace.
info() <<
"Max image thres. = " << thresholdMax << std::endl;
const double R = 20;
trace.
info() <<
"Big radius R = " << R << std::endl;
const double r = 3;
trace.
info() <<
"Small radius r = " << r << std::endl;
const double trivial_r = 3;
trace.
info() <<
"Trivial radius t = " << trivial_r << std::endl;
const double T = 0.1;
trace.
info() <<
"Feature thres. T = " << T << std::endl;
const double size = 1.0;
KSpace ks;
trace.
beginBlock(
"Loading image into memory and build digital surface." );
ThresholdedImage thresholdedImage( image, thresholdMin, thresholdMax );
ks.init( image.
domain().lowerBound(),
image.
domain().upperBound(), true );
DigitalSurfaceContainer* container =
new DigitalSurfaceContainer( ks, thresholdedImage, surfAdj, bel, false );
trace.
info() <<
"Digital surface has " << surface.
size() <<
" surfels." << std::endl;
Metric l2;
KernelFunction chi( 1.0, r );
VCMOnSurface vcm_surface( surface, embType, R, r,
chi, trivial_r, l2, true );
Cell dummy;
viewer.setWindowTitle("3D VCM viewer");
viewer <<
SetMode3D( dummy.className(),
"Basic" );
RealVector lambda;
for ( S2NConstIterator it = vcm_surface.mapSurfel2Normals().begin(),
itE = vcm_surface.mapSurfel2Normals().end(); it != itE; ++it )
{
Surfel s = it->first;
Point kp = ks.sKCoords( s );
RealPoint rp( 0.5 * (double) kp[ 0 ], 0.5 * (double) kp[ 1 ], 0.5 * (double) kp[ 2 ] );
RealVector n = it->second.vcmNormal;
vcm_surface.getChiVCMEigenvalues( lambda, s );
double ratio = lambda[ 1 ] / ( lambda[ 0 ] + lambda[ 1 ] + lambda[ 2 ] );
viewer << ks.unsigns( s );
n *= size;
viewer.
addLine( rp + n, rp - n, 0.1 );
}
viewer << Viewer3D<>::updateDisplay;
application.exec();
return 0;
}