Computing the area of a sphere with an indexed digital surface. First normals are estimated by averaging the trivial normals in a k-neighborhood of each surfel. Then both the corrected area (scalar product of estimated normal with trivial normal) and the averaged area (inverse of L1-norm of estimated normal) is computed per surfel, and summed in order to get area estimation. This example illustrates the use of a DGtal::IndexedDigitalSurface and DGtal::BreadthFirstVisitor onto it. This method is slightly faster than using a DGtal::DigitalSurface.
- See also
- Precomputed 3D digital surface with IndexedDigitalSurface
$ ./examples/topology/area-estimation-with-indexed-digital-surface 13 6
New Block [Creating surface]
Sphere of radius 13, 6-ring neighborhood
[OK] Sphere has 3174 vertices/surfels with euler 2
EndBlock [Creating surface] (55.999 ms)
New Block [Estimating normals]
EndBlock [Estimating normals] (274.712 ms)
New Block [Estimating area]
- true area = 2123.72
- corrected area = 2109.58
- averaged area = 2150.34
EndBlock [Estimating area] (0.023 ms)
#include <cstdlib>
#include <iostream>
#include <map>
#include "DGtal/base/Common.h"
#include "DGtal/base/CountedPtr.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/kernel/PointVector.h"
#include "DGtal/graph/CUndirectedSimpleGraph.h"
#include "DGtal/graph/BreadthFirstVisitor.h"
#include "DGtal/topology/DigitalSetBoundary.h"
#include "DGtal/topology/IndexedDigitalSurface.h"
#include "DGtal/shapes/Shapes.h"
using namespace std;
int main(
int argc,
char** argv )
{
const double R = argc >= 2 ? atof( argv[ 1 ] ) : 13.0;
const unsigned int KN = argc >= 3 ? atoi( argv[ 2 ] ) : 6;
const int M = (int) ceil( R + 2.0 );
<< ", " << KN << "-ring neighborhood" << std::endl;
DigSurface dsurf( dsc );
<< " Sphere has " << dsurf.size() << " vertices/surfels"
<< " with euler " << dsurf.Euler() << std::endl;
auto v2n = dsurf.makeVertexMap(
RealPoint() );
for ( auto v : dsurf )
{
int nbv = 0;
BFSVisitor bfv( dsurf, v );
while( ! bfv.finished() )
{
auto node = bfv.current();
if ( KN < node.second ) break;
auto surfel = dsurf.surfel( node.first );
nv[ k ] =
K.
sDirect( surfel, k ) ? 1.0 : -1.0;
normal += nv;
nbv += 1;
bfv.expand();
}
normal /= nbv;
}
const double area_true = 4.0 * M_PI * R * R;
double area_averaged = 0.0;
double area_corrected = 0.0;
for ( auto v : dsurf )
{
auto surfel = dsurf.surfel( v );
area_corrected += fabs( v2n[ v ][ k ] );
}
trace.
info() <<
"- true area = " << area_true << std::endl;
trace.
info() <<
"- corrected area = " << area_corrected << std::endl;
trace.
info() <<
"- averaged area = " << area_averaged << std::endl;
return 0;
}