DGtal 1.3.0
Loading...
Searching...
No Matches
BoundedLatticePolytopeCounter.ih
1/**
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 *
15 **/
16
17/**
18 * @file BoundedLatticePolytopeCounter.ih
19 * @author Jacques-Olivier Lachaud (\c jacques-olivier.lachaud@univ-savoie.fr )
20 * Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
21 *
22 * @date 2022/06/17
23 *
24 * Implementation of inline methods defined in BoundedLatticePolytopeCounter.h
25 *
26 * This file is part of the DGtal library.
27 */
28
29
30//////////////////////////////////////////////////////////////////////////////
31#include <cstdlib>
32//////////////////////////////////////////////////////////////////////////////
33
34///////////////////////////////////////////////////////////////////////////////
35// IMPLEMENTATION of inline methods.
36///////////////////////////////////////////////////////////////////////////////
37
38///////////////////////////////////////////////////////////////////////////////
39// ----------------------- Standard services ------------------------------
40
41//-----------------------------------------------------------------------------
42template <typename TSpace>
43DGtal::BoundedLatticePolytopeCounter<TSpace>::
44BoundedLatticePolytopeCounter
45( const Polytope& P )
46{
47 init( &P );
48}
49
50//-----------------------------------------------------------------------------
51template <typename TSpace>
52void
53DGtal::BoundedLatticePolytopeCounter<TSpace>::
54init
55( const Polytope* ptrP )
56{
57 myPolytope = ptrP;
58 if ( ptrP == nullptr ) return;
59 myLower = ptrP->getDomain().lowerBound();
60 myUpper = ptrP->getDomain().upperBound();
61}
62
63
64//-----------------------------------------------------------------------------
65template <typename TSpace>
66typename DGtal::BoundedLatticePolytopeCounter<TSpace>::Interval
67DGtal::BoundedLatticePolytopeCounter<TSpace>::
68intersectionIntervalAlongAxis( Point p, Dimension a ) const
69{
70 ASSERT( myPolytope != nullptr );
71 const Polytope& P = *myPolytope;
72 const InequalityMatrix& A = P.getA();
73 const InequalityVector& B = P.getB();
74 const std::vector<bool>& I = P.getI();
75 Integer x_min = myLower[ a ];
76 Integer x_max = myUpper[ a ]+1;
77 Integer x = 0;
78 const Integer x_a = x_min;
79 p[ a ] = x_a;
80 bool empty = false;
81 for ( Dimension k = 2*dimension; k < A.size(); k++ )
82 {
83 const Integer c = A[ k ].dot( p );
84 const Integer n = A[ k ][ a ];
85 const Integer b = B[ k ];
86 if ( n == 0 )
87 { // constraint is // to the specified axis.
88 empty = ! ( I[ k ] ? ( c <= b ) : c < b );
89 }
90 else if ( n > 0 )
91 {
92 Integer d = b - c;
93 if ( d < 0 ) empty = true;
94 else
95 {
96 x = I[ k ] ? ( d / n + 1 ) : ( (d+n-1) / n ) ;
97 x_max = std::min( x_max, x_a + x );
98 }
99 }
100 else // ( n < 0 )
101 {
102 Integer d = c - b;
103 if ( d >= 0 )
104 {
105 x = I[ k ] ? ( (d-n-1) / -n ) : ( d / -n + 1 );
106 x_min = std::max( x_min, x_a + x );
107 }
108 // otherwise the constraint is true
109 }
110 if ( empty || ( x_max <= x_min ) ) return Interval( 0, 0 );
111 }
112 return Interval( x_min, x_max );
113}
114
115//-----------------------------------------------------------------------------
116template <typename TSpace>
117typename DGtal::BoundedLatticePolytopeCounter<TSpace>::Interval
118DGtal::BoundedLatticePolytopeCounter<TSpace>::
119interiorIntersectionIntervalAlongAxis( Point p, Dimension a ) const
120{
121 ASSERT( myPolytope != nullptr );
122 const Polytope& P = *myPolytope;
123 const InequalityMatrix& A = P.getA();
124 const InequalityVector& B = P.getB();
125 Integer x_min = myLower[ a ];
126 Integer x_max = myUpper[ a ]+1;
127 Integer x = 0;
128 const Integer x_a = x_min;
129 p[ a ] = x_a;
130 bool empty = false;
131 for ( Dimension k = 2*dimension; k < A.size(); k++ )
132 {
133 const Integer c = A[ k ].dot( p );
134 const Integer n = A[ k ][ a ];
135 const Integer b = B[ k ];
136 if ( n == 0 )
137 { // constraint is // to the specified axis.
138 empty = ( b <= c );
139 }
140 else if ( n > 0 )
141 {
142 Integer d = b - c;
143 if ( d < 0 ) empty = true;
144 else
145 {
146 x = (d+n-1) / n;
147 x_max = std::min( x_max, x_a + x );
148 }
149 }
150 else // ( n < 0 )
151 {
152 Integer d = c - b;
153 if ( d >= 0 )
154 {
155 x = d / -n + 1;
156 x_min = std::max( x_min, x_a + x );
157 }
158 // otherwise the constraint is true
159 }
160 // std::cout << " (" << empty << ":" << x_min << "," << x_max << ")";
161 if ( empty || ( x_max <= x_min ) ) return Interval( 0, 0 );
162 }
163 return Interval( x_min, x_max );
164}
165
166//-----------------------------------------------------------------------------
167template <typename TSpace>
168typename DGtal::BoundedLatticePolytopeCounter<TSpace>::Integer
169DGtal::BoundedLatticePolytopeCounter<TSpace>::
170countAlongAxis( Dimension a ) const
171{
172 ASSERT( myPolytope != nullptr );
173 Point lo = myLower;
174 Point hi = myUpper;
175 hi[ a ] = lo[ a ];
176 Domain D( lo, hi );
177 Integer nb = 0;
178 for ( auto&& p : D )
179 {
180 auto I = intersectionIntervalAlongAxis( p, a );
181 nb += I.second - I.first;
182 }
183 return nb;
184}
185
186//-----------------------------------------------------------------------------
187template <typename TSpace>
188typename DGtal::BoundedLatticePolytopeCounter<TSpace>::Integer
189DGtal::BoundedLatticePolytopeCounter<TSpace>::
190countInteriorAlongAxis( Dimension a ) const
191{
192 ASSERT( myPolytope != nullptr );
193 Point lo = myLower;
194 Point hi = myUpper;
195 hi[ a ] = lo[ a ];
196 Domain D( lo, hi );
197 Integer nb = 0;
198 for ( auto&& p : D )
199 {
200 auto I = interiorIntersectionIntervalAlongAxis( p, a );
201 nb += I.second - I.first;
202 }
203 return nb;
204}
205
206//-----------------------------------------------------------------------------
207template <typename TSpace>
208void
209DGtal::BoundedLatticePolytopeCounter<TSpace>::
210getPointsAlongAxis( PointRange& pts, Dimension a ) const
211{
212 ASSERT( myPolytope != nullptr );
213 Point lo = myLower;
214 Point hi = myUpper;
215 hi[ a ] = lo[ a ];
216 Domain D( lo, hi );
217 Integer nb = 0;
218 for ( auto&& p : D )
219 {
220 auto I = intersectionIntervalAlongAxis( p, a );
221 Point q = p;
222 for ( Integer x = I.first; x != I.second; x++ )
223 {
224 q[ a ] = x;
225 pts.push_back( q );
226 }
227 }
228}
229
230//-----------------------------------------------------------------------------
231template <typename TSpace>
232void
233DGtal::BoundedLatticePolytopeCounter<TSpace>::
234getInteriorPointsAlongAxis( PointRange& pts, Dimension a ) const
235{
236 ASSERT( myPolytope != nullptr );
237 Point lo = myLower;
238 Point hi = myUpper;
239 hi[ a ] = lo[ a ];
240 Domain D( lo, hi );
241 Integer nb = 0;
242 for ( auto&& p : D )
243 {
244 auto I = interiorIntersectionIntervalAlongAxis( p, a );
245 Point q = p;
246 for ( Integer x = I.first; x != I.second; x++ )
247 {
248 q[ a ] = x;
249 pts.push_back( q );
250 }
251 }
252}
253
254
255//-----------------------------------------------------------------------------
256template <typename TSpace>
257typename DGtal::BoundedLatticePolytopeCounter<TSpace>::LatticeSetByInterval
258DGtal::BoundedLatticePolytopeCounter<TSpace>::
259getLatticeSet( Dimension a ) const
260{
261 ASSERT( myPolytope != nullptr );
262 Point lo = myLower;
263 Point hi = myUpper;
264 hi[ a ] = 0;
265 lo[ a ] = 0;
266 Domain D( lo, hi );
267 LatticeSetByInterval L;
268 for ( auto&& p : D )
269 {
270 auto I = intersectionIntervalAlongAxis( p, a );
271 L[ p ] = I;
272 }
273}
274
275//-----------------------------------------------------------------------------
276template <typename TSpace>
277typename DGtal::BoundedLatticePolytopeCounter<TSpace>::LatticeSetByInterval
278DGtal::BoundedLatticePolytopeCounter<TSpace>::
279getLatticeCells( Dimension a ) const
280{
281 ASSERT( myPolytope != nullptr );
282 Point lo = myLower;
283 Point hi = myUpper;
284 hi[ a ] = 0;
285 lo[ a ] = 0;
286 Domain D( lo, hi );
287 LatticeSetByInterval L; //< stores the intersected cells
288 const Point One = Point::diagonal( 1 );
289 Point q;
290 for ( auto&& p : D )
291 {
292 q = 2*p - One; q[ a ] = 0;
293 const auto I = intersectionIntervalAlongAxis( p, a );
294 const auto n = I.second - I.first;
295 if ( n != 0 )
296 {
297 // Now the second bound is included
298 L[ q ] = Interval( 2 * I.first - 1, 2 * I.second - 3 );
299 }
300 }
301 // It remains to compute all the k-cells, 0 <= k < d, intersected by Cvxh( Z )
302 for ( Dimension k = 0; k < dimension; k++ )
303 {
304 if ( k == a ) continue;
305 std::vector< Point > q_computed;
306 std::vector< Interval > I_computed;
307 for ( const auto& value : L )
308 {
309 Point p = value.first;
310 Interval I = value.second;
311 Point r = p; r[ k ] += 2;
312 const auto it = L.find( r );
313 if ( it == L.end() ) continue; // neighbor is empty
314 // Otherwise compute common part.
315 Interval J = it->second;
316 auto f = std::max( I.first, J.first );
317 auto s = std::min( I.second, J.second );
318 if ( f <= s )
319 {
320 Point q = p; q[ k ] += 1;
321 q_computed.push_back( q );
322 I_computed.push_back( Interval( f, s ) );
323 }
324 }
325 // Add new columns to map Point -> column
326 for ( auto i = 0; i < q_computed.size(); ++i )
327 {
328 L[ q_computed[ i ] ] = I_computed[ i ];
329 }
330 }
331 return L;
332}
333
334//-----------------------------------------------------------------------------
335template <typename TSpace>
336DGtal::Dimension
337DGtal::BoundedLatticePolytopeCounter<TSpace>::
338longestAxis( ) const
339{
340 ASSERT( myPolytope != nullptr );
341 Dimension b = 0;
342 auto b_size = myUpper[ 0 ] - myLower[ 0 ];
343 for ( Dimension a = 1; a < dimension; a++ )
344 {
345 const auto a_size = myUpper[ a ] - myLower[ a ];
346 if ( b_size < a_size ) { b = a; b_size = a_size; }
347 }
348 return b;
349}
350
351
352// //
353///////////////////////////////////////////////////////////////////////////////