DGtal 1.3.0
Loading...
Searching...
No Matches
DigitalSurfaceRegularization.ih
1/**
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 *
15 **/
16
17/**
18 * @file
19 * @author David Coeurjolly (\c david.coeurjolly@liris.cnrs.fr )
20 * Laboratoire d'InfoRmatique en Image et Systemes d'information - LIRIS (CNRS, UMR 5205), CNRS, France
21 *
22 * @date 2019/10/25
23 *
24 * Implementation of inline methods defined in DigitalSurfaceRegularization.h
25 *
26 * This file is part of the DGtal library.
27 */
28
29
30//////////////////////////////////////////////////////////////////////////////
31#include <cstdlib>
32#include <algorithm>
33//////////////////////////////////////////////////////////////////////////////
34
35///////////////////////////////////////////////////////////////////////////////
36// Interface - public :
37
38/**
39 * Writes/Displays the object on an output stream.
40 * @param out the output stream where the object is written.
41 */
42template <typename T>
43inline
44void
45DGtal::DigitalSurfaceRegularization<T>::selfDisplay ( std::ostream & out ) const
46{
47 out << "[DigitalSurfaceRegularization] alpha= "<<myAlpha
48 <<" beta= "<<myBeta <<" gamma= "<<myGamma
49 << " number of surfels= "<<mySurfels.size();
50}
51
52/**
53 * Checks the validity/consistency of the object.
54 * @return 'true' if the object is valid, 'false' otherwise.
55 */
56template <typename T>
57inline
58bool
59DGtal::DigitalSurfaceRegularization<T>::isValid() const
60{
61 return myDigitalSurface.isValid();
62}
63
64///////////////////////////////////////////////////////////////////////////////
65// Implementation of inline functions //
66///////////////////////////////////////////////////////////////////////////////
67template <typename T>
68inline
69void DGtal::DigitalSurfaceRegularization<T>::attachConvolvedTrivialNormalVectors(const Parameters someParams)
70{
71 ASSERT_MSG(myInit, "The init() method must be called before setting the normals");
72 myNormals = SHG3::getCTrivialNormalVectors( myDigitalSurface, mySurfels, someParams);
73}
74
75///////////////////////////////////////////////////////////////////////////////
76template <typename T>
77inline
78void
79DGtal::DigitalSurfaceRegularization<T>::attachNormalVectors(const std::function<SHG3::RealVector(SH3::SCell&)> &normalFunc)
80{
81 ASSERT_MSG(myInit, "The init() method must be called before setting the normals");
82 myNormals.resize( mySurfels.size());
83 for(auto i=0; i< mySurfels.size();++i)
84 myNormals[i] = normalFunc( mySurfels[i] );
85}
86///////////////////////////////////////////////////////////////////////////////
87//
88template <typename T>
89inline
90void DGtal::DigitalSurfaceRegularization<T>::cacheInit()
91{
92 //Collecting the surfels range
93 auto params = SH3::defaultParameters() | SHG3::defaultParameters();
94 mySurfels.clear();
95 mySurfels = SH3::getSurfelRange( myDigitalSurface, params );
96
97 myPointelIndex.clear();
98 //Collecting the input points
99 auto pointels = SH3::getPointelRange(myPointelIndex,myDigitalSurface);
100 auto embedder = SH3::getCellEmbedder(myK); // /!\ no grid step here
101 myOriginalPositions.clear();
102 std::transform(pointels.begin(), pointels.end(), std::back_inserter(myOriginalPositions),
103 [embedder](SH3::Cell &pointel ) {return embedder(pointel); } );
104
105 //Init the regularized positions.
106 myRegularizedPositions.resize(myOriginalPositions.size());
107 std::copy(myOriginalPositions.begin(), myOriginalPositions.end(), myRegularizedPositions.begin());
108
109 //Allocating Gradient vector
110 myGradient.clear();
111 myGradientAlign.clear();
112 myGradient.resize(myOriginalPositions.size());
113 myGradientAlign.resize(myOriginalPositions.size());
114
115 /////
116 ///Cacheing some topological information
117 auto polySurf = SH3::makeDualPolygonalSurface(mySurfelIndex,myDigitalSurface);
118 myFaces = polySurf->allFaces() ; //All faces of the dual digital surface
119 auto dsurf_faces = myDigitalSurface->allClosedFaces(); // Faces of digital surface (umbrellas)
120 // dsurf_pointels list the pointels in the same order as the faces of polySurf.
121 std::vector<SH3::Cell> dsurf_pointels( dsurf_faces.size() );
122 std::transform( dsurf_faces.cbegin(), dsurf_faces.cend(),
123 dsurf_pointels.begin(),
124 [&] ( const SH3::DigitalSurface::Face f ) { return myK.unsigns(myDigitalSurface->pivot( f )); } );
125
126
127 myNumberAdjEdgesToPointel.resize(myOriginalPositions.size(),0);
128
129 // Precompute all relations for align energy
130 myAlignPointelsIdx.resize( mySurfels.size() * 4 );
131 myAlignPointels.resize( mySurfels.size() * 4 );
132
133 for(int i = 0; i < mySurfels.size(); ++i)
134 {
135 auto pointelsAround = myDigitalSurface->facesAroundVertex(mySurfels[i],true);
136 ASSERT(pointelsAround.size() == 4);
137 for(auto j = 0; j < 4; ++j)
138 {
139 auto p = myK.unsigns(myDigitalSurface->pivot(pointelsAround[ j ]));
140 auto cell_p = myPointelIndex[ p ];
141 myAlignPointelsIdx[ 4*i + j ] = cell_p;
142 myAlignPointels[4*i + j] = p;
143 myNumberAdjEdgesToPointel[ cell_p ] ++;
144 }
145 }
146
147 // Precompute all relations for fairness energy
148 myNbAdjacent.resize( myFaces.size() );
149 for(auto faceId=0 ; faceId < myFaces.size(); ++faceId)
150 {
151 auto idx = myPointelIndex[ dsurf_pointels[ faceId ] ];
152 myFairnessPointelsIdx.push_back( idx );
153 unsigned char nbAdj = 0;
154 auto arcs = polySurf->arcsAroundFace(faceId);
155 for(auto anArc : arcs)
156 {
157 // /!\ we must check that the opposite exists (aka surface with boundaries)
158 auto op = polySurf->opposite(anArc);
159 auto adjFace = polySurf->faceAroundArc(op);
160 ASSERT(adjFace != faceId);
161 myFairnessPointelsIdx.push_back( myPointelIndex[ dsurf_pointels[ adjFace] ] );
162 nbAdj++;
163 }
164 ASSERT(nbAdj>0);
165 myNbAdjacent[ faceId ] = nbAdj;
166 }
167}
168///////////////////////////////////////////////////////////////////////////////
169//
170template <typename T>
171inline
172void DGtal::DigitalSurfaceRegularization<T>::init(const double alpha,
173 const double beta,
174 const double gamma)
175{
176 myAlpha = alpha;
177 myBeta = beta;
178 myGamma = gamma;
179 myInit = true;
180 myConstantCoeffs = true;
181 cacheInit();
182}
183///////////////////////////////////////////////////////////////////////////////
184//
185template <typename T>
186inline
187void DGtal::DigitalSurfaceRegularization<T>::init(ConstAlias< std::vector<double> > alphas,
188 ConstAlias< std::vector<double> > betas,
189 ConstAlias< std::vector<double> > gammas)
190{
191 myAlpha = 0.0;
192 myBeta = 0.0;
193 myGamma = 0.0;
194
195 myAlphas = &alphas;
196 myBetas = &betas;
197 myGammas = &gammas;
198
199 myInit = true;
200 myConstantCoeffs = false;
201 cacheInit();
202
203 ASSERT_MSG(alphas->size() == myOriginalPositions.size(), "The alpha vector size must equal the number of pointels");
204 ASSERT_MSG(betas->size() == myOriginalPositions.size(), "The beta vector size must equal the number of pointels");
205 ASSERT_MSG(gammas->size() == myOriginalPositions.size(), "The gamma vector size must equal the number of pointels");
206}
207///////////////////////////////////////////////////////////////////////////////
208template <typename T>
209inline
210double
211DGtal::DigitalSurfaceRegularization<T>::computeGradient()
212{
213 double energy= 0.0;
214 auto zero = SH3::RealPoint(0,0,0);
215
216 ASSERT_MSG(myInit, "The init() method must be called before computing the gradient");
217 ASSERT_MSG(myNormals.size() != 0, "Some normal vectors must be attached to the digital surface before computing the gradient");
218
219 //data attachment term
220 for(int i = 0; i < myOriginalPositions.size(); ++i)
221 {
222 const auto delta_d = myOriginalPositions[i] - myRegularizedPositions[i];
223 energy += myAlpha * delta_d.squaredNorm() ;
224 myGradient[i] = 2.0*myAlpha * delta_d;
225 //reset for align
226 myGradientAlign[i] = zero;
227 }
228
229 //align
230 auto it = myAlignPointelsIdx.cbegin();
231 for(int i = 0; i < mySurfels.size(); ++i)
232 {
233 const auto cell_p0 = *it++;
234 const auto cell_p1 = *it++;
235 const auto cell_p2 = *it++;
236 const auto cell_p3 = *it++;
237 const auto e0 = myRegularizedPositions[ cell_p0 ] - myRegularizedPositions[ cell_p1 ];
238 const auto e1 = myRegularizedPositions[ cell_p1 ] - myRegularizedPositions[ cell_p2 ];
239 const auto e2 = myRegularizedPositions[ cell_p2 ] - myRegularizedPositions[ cell_p3 ];
240 const auto e3 = myRegularizedPositions[ cell_p3 ] - myRegularizedPositions[ cell_p0 ];
241 const auto cos_a0 = e0.dot( myNormals[i] );
242 const auto cos_a1 = e1.dot( myNormals[i] );
243 const auto cos_a2 = e2.dot( myNormals[i] );
244 const auto cos_a3 = e3.dot( myNormals[i] );
245 energy += myBeta * ( cos_a0 * cos_a0 + cos_a1 * cos_a1
246 + cos_a2 * cos_a2 + cos_a3 * cos_a3 );
247 myGradientAlign[ cell_p0 ] += cos_a0 * myNormals[i];
248 myGradientAlign[ cell_p1 ] += cos_a1 * myNormals[i];
249 myGradientAlign[ cell_p2 ] += cos_a2 * myNormals[i];
250 myGradientAlign[ cell_p3 ] += cos_a3 * myNormals[i];
251 }
252 for(auto i=0; i < myOriginalPositions.size(); ++i)
253 {
254 ASSERT(myNumberAdjEdgesToPointel[i] >0);
255 myGradient[i] += 2.0*myBeta * myGradientAlign[i] / (double)myNumberAdjEdgesToPointel[i];
256 }
257
258 //fairness
259 auto itP = myFairnessPointelsIdx.cbegin();
260 auto itNb = myNbAdjacent.cbegin();
261 SH3::RealPoint barycenter, phat ;
262 for(int faceId=0 ; faceId < myFaces.size(); ++faceId)
263 {
264 auto idx = *itP++;
265 unsigned int nbAdj = *itNb++;
266 barycenter = zero;
267 phat = myRegularizedPositions[ idx ];
268 for ( unsigned int i = 0; i < nbAdj; ++i )
269 barycenter += myRegularizedPositions[ *itP++ ];
270 ASSERT(nbAdj>0);
271 barycenter /= (double)nbAdj;
272 auto delta_f = phat - barycenter;
273 energy += myGamma * delta_f.squaredNorm() ;
274 myGradient[ idx ] += 2.0*myGamma * delta_f;
275 }
276
277 return energy;
278}
279///////////////////////////////////////////////////////////////////////////////
280template <typename T>
281inline
282double
283DGtal::DigitalSurfaceRegularization<T>::computeGradientLocalWeights()
284{
285 double energy= 0.0;
286 auto zero = SH3::RealPoint(0,0,0);
287
288 ASSERT_MSG(myInit, "The init() method must be called before computing the gradient");
289 ASSERT_MSG(myNormals.size() != 0, "Some normal vectors must be attached to the digital surface before computing the gradient");
290
291 //data attachment term
292 for(int i = 0; i < myOriginalPositions.size(); ++i)
293 {
294 const auto delta_d = myOriginalPositions[i] - myRegularizedPositions[i];
295 energy += (*myAlphas)[i] * delta_d.squaredNorm() ;
296 myGradient[i] = 2.0*(*myAlphas)[i] * delta_d;
297 //reset for align
298 myGradientAlign[i] = zero;
299 }
300
301 //align
302 auto it = myAlignPointelsIdx.cbegin();
303 for(int i = 0; i < mySurfels.size(); ++i)
304 {
305 const auto cell_p0 = *it++;
306 const auto cell_p1 = *it++;
307 const auto cell_p2 = *it++;
308 const auto cell_p3 = *it++;
309 const auto e0 = myRegularizedPositions[ cell_p0 ] - myRegularizedPositions[ cell_p1 ];
310 const auto e1 = myRegularizedPositions[ cell_p1 ] - myRegularizedPositions[ cell_p2 ];
311 const auto e2 = myRegularizedPositions[ cell_p2 ] - myRegularizedPositions[ cell_p3 ];
312 const auto e3 = myRegularizedPositions[ cell_p3 ] - myRegularizedPositions[ cell_p0 ];
313 const auto cos_a0 = e0.dot( myNormals[i] );
314 const auto cos_a1 = e1.dot( myNormals[i] );
315 const auto cos_a2 = e2.dot( myNormals[i] );
316 const auto cos_a3 = e3.dot( myNormals[i] );
317 energy += (*myBetas)[ cell_p0 ] * cos_a0 * cos_a0
318 + (*myBetas)[ cell_p1 ] * cos_a1 * cos_a1
319 + (*myBetas)[ cell_p2 ] * cos_a2 * cos_a2
320 + (*myBetas)[ cell_p3 ] * cos_a3 * cos_a3;
321 myGradientAlign[ cell_p0 ] += cos_a0 * myNormals[i];
322 myGradientAlign[ cell_p1 ] += cos_a1 * myNormals[i];
323 myGradientAlign[ cell_p2 ] += cos_a2 * myNormals[i];
324 myGradientAlign[ cell_p3 ] += cos_a3 * myNormals[i];
325 }
326 for(auto i=0; i < myOriginalPositions.size(); ++i)
327 {
328 ASSERT(myNumberAdjEdgesToPointel[i] >0);
329 myGradient[i] += 2.0*(*myBetas)[i] * myGradientAlign[i] / (double)myNumberAdjEdgesToPointel[i];
330 }
331
332 //fairness
333 auto itP = myFairnessPointelsIdx.cbegin();
334 auto itNb = myNbAdjacent.cbegin();
335 SH3::RealPoint barycenter, phat ;
336 for(int faceId=0 ; faceId < myFaces.size(); ++faceId)
337 {
338 const auto idx = *itP++;
339 const unsigned int nbAdj = *itNb++;
340 barycenter = zero;
341 phat = myRegularizedPositions[ idx ];
342 for ( unsigned int i = 0; i < nbAdj; ++i )
343 barycenter += myRegularizedPositions[ *itP++ ];
344 ASSERT(nbAdj>0);
345 barycenter /= (double)nbAdj;
346 auto delta_f = phat - barycenter;
347 energy += (*myGammas)[ idx ] * delta_f.squaredNorm() ;
348 myGradient[ idx ] += 2.0*(*myGammas)[ idx ] * delta_f;
349 }
350
351 return energy;
352}
353
354///////////////////////////////////////////////////////////////////////////////
355template <typename T>
356template <typename AdvectionFunction>
357inline
358double
359DGtal::DigitalSurfaceRegularization<T>::regularize(const unsigned int nbIters,
360 const double dt,
361 const double epsilon,
362 const AdvectionFunction &advectionFunc)
363{
364 double energy = 0.0;
365 double last_energy = 0.0;
366 double mydt=dt;
367 bool first_iter = true;
368 for(auto i = 0; i < nbIters; ++i)
369 {
370 if (myConstantCoeffs)
371 energy = computeGradient();
372 else
373 energy = computeGradientLocalWeights();
374
375 double gradnorm=0.0;
376 for(auto &v: myGradient)
377 gradnorm = std::max(gradnorm, v.norm());
378
379 if (myVerbose)
380 trace.info()<< "Step " << i
381 << " dt=" << mydt
382 << " energy = " << energy
383 << " gradnorm= " << gradnorm << std::endl;
384
385
386 //Naive linesearch by doubling the learning rate
387 if ( ! first_iter )
388 mydt *= ( energy > last_energy ) ? 0.5 : 1.1;
389
390 //Stopping criterion
391 if ( mydt < epsilon ) return energy;
392
393 last_energy = energy;
394 first_iter = false;
395
396 //One step advection
397 SHG3::RealVector v;
398 for(int i=0; i < myRegularizedPositions.size(); ++i)
399 {
400 v = - mydt * myGradient[i] ;
401 advectionFunc( myRegularizedPositions[i], myOriginalPositions[i], v );
402 }
403 }
404 return energy;
405}
406///////////////////////////////////////////////////////////////////////////////
407
408template <typename T>
409inline
410std::ostream&
411DGtal::operator<< ( std::ostream & out,
412 const DGtal::DigitalSurfaceRegularization<T> & object )
413{
414 object.selfDisplay( out );
415 return out;
416}
417// //
418///////////////////////////////////////////////////////////////////////////////
419