File failed to load: https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/config/TeX-MML-AM_CHTML/MathJax.js
DGtal 1.4.0
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
testPolygonalCalculus.cpp
Go to the documentation of this file.
1
33#include <iostream>
34#include "DGtal/base/Common.h"
35#include "ConfigTest.h"
36#include "DGtalCatch.h"
37#include "DGtal/helpers/StdDefs.h"
38
39#include "DGtal/dec/PolygonalCalculus.h"
40#include "DGtal/shapes/SurfaceMesh.h"
41#include "DGtal/shapes/MeshHelpers.h"
42#include "DGtal/helpers/Shortcuts.h"
43#include "DGtal/math/linalg/DirichletConditions.h"
45
46using namespace std;
47using namespace DGtal;
48using namespace Z3i;
49
51// Functions for testing class PolygonalCalculus.
53
58
59TEST_CASE( "Testing PolygonalCalculus" )
60{
62 std::vector<RealPoint> positions = { RealPoint( 0, 0, 0 ) ,
63 RealPoint( 1, 0, 0 ) ,
64 RealPoint( 0, 1, 0 ) ,
65 RealPoint( 1, 1, 0 ) ,
66 RealPoint( 0, 0, 1 ) ,
67 RealPoint( 1, 0, 1 ) ,
68 RealPoint( 0, 1, 1 ) ,
69 RealPoint( 1, 1, 1 ) ,
70 RealPoint( 1, 0, 2 ) ,
71 RealPoint( 0, 0, 2 ) };
72 std::vector<Mesh::Vertices> faces = { { 1, 0, 2, 3 },
73 { 0, 1, 5, 4 } ,
74 { 1, 3, 7, 5 } ,
75 { 3, 2, 6, 7 } ,
76 { 2, 0, 4, 6 } ,
77 { 4, 5, 8, 9 } };
78
79 Mesh box(positions.cbegin(), positions.cend(),
80 faces.cbegin(), faces.cend());
81
83
84 SECTION("Construction and basic operators")
85 {
86 REQUIRE( boxCalculus.isValid() );
87 REQUIRE( boxCalculus.nbVertices() == positions.size() );
88
90 auto x = boxCalculus.X(f);
91 auto d = boxCalculus.D(f);
92 auto a = boxCalculus.A(f);
93
94 //Checking X
96 REQUIRE( vecToRealPoint(vec ) == positions[1]);
97 vec = x.row(1);
98 REQUIRE( vecToRealPoint(vec ) == positions[0]);
99 vec = x.row(2);
100 REQUIRE( vecToRealPoint(vec ) == positions[2]);
101 vec = x.row(3);
102 REQUIRE( vecToRealPoint(vec ) == positions[3]);
103
104 trace.info()<< boxCalculus <<std::endl;
105
106 //Some D and A
107 REQUIRE( d(1,1) == -1 );
108 REQUIRE( d(0,1) == 1 );
109 REQUIRE( d(0,2) == 0 );
110
111 REQUIRE( a(1,1) == 0.5 );
112 REQUIRE( a(0,1) == 0.5 );
113 REQUIRE( a(0,2) == 0 );
114
115 auto vectorArea = boxCalculus.vectorArea(f);
116
117 //Without correction, this should match
118 for(auto ff=0; ff<6; ++ff)
119 REQUIRE( boxCalculus.faceArea(ff) == box.faceArea(ff) );
120
121 box.computeFaceNormalsFromPositions();
122 for(auto ff=0; ff<6; ++ff)
123 {
124 auto cn = boxCalculus.faceNormalAsDGtalVector(ff);
125 auto n = box.faceNormal(ff);
126 REQUIRE( cn == n );
127 }
128
129 RealPoint c = boxCalculus.centroidAsDGtalPoint(f);
130 RealPoint expected(0.5,0.5,0.0);
131 REQUIRE(c == expected);
132 }
133
134 SECTION("Derivatives")
135 {
137 auto d = boxCalculus.D(f);
138
139 auto nf = boxCalculus.faceDegree(f);
141 phi << 1.0, 3.0, 2.0, 6.0;
142 expected << 2,-1,4,-5;
143 auto dphi = d*phi; // n_f x 1 matrix
144 REQUIRE(dphi == expected);
145
146 }
147
148 SECTION("Structural propertes")
149 {
151 auto nf = boxCalculus.faceDegree(f);
153 phi << 1.0, 3.0, 2.0, 6.0;
154
155 auto G = boxCalculus.gradient(f);
156 auto gphi = G*phi;
157 auto coG = boxCalculus.coGradient(f);
158 auto cogphi = coG*phi;
159
160 // grad . cograd == 0
161 REQUIRE( gphi.dot(cogphi) == 0.0);
162
163 // Gf = Uf Df
164 REQUIRE( G == boxCalculus.sharp(f)*boxCalculus.D(f));
165
166 // UV = I - nn^t (lemma4)
168 REQUIRE( boxCalculus.sharp(f)*boxCalculus.flat(f) == PolygonalCalculus< RealPoint,RealVector >::DenseMatrix::Identity(3,3) - n*n.transpose() );
169
170 // P^2 = P (lemma6)
171 auto P = boxCalculus.P(f);
172 REQUIRE( P*P == P);
173
174 // PV=0 (lemma5)
175 REQUIRE( (P*boxCalculus.flat(f)).norm() == 0.0);
176 }
177
178 SECTION("Div / Curl")
179 {
181 auto curl = boxCalculus.curl(f);
182 //Not a great test BTW
183 REQUIRE(curl.norm() == 2.0);
184 }
185
186 SECTION("Local Laplace-Beltrami")
187 {
189 auto nf = box.incidentVertices(f).size();
190
191 auto L = boxCalculus.laplaceBeltrami(f);
193 phi << 1.0, 1.0, 1.0, 1.0;
194 expected << 0,0,0,0;
195 auto lphi = L*phi;
196 REQUIRE( lphi == expected);
197 }
198
199 SECTION("Local Connection-Laplace-Beltrami")
200 {
202 auto nf = box.incidentVertices(f).size();
203
204 auto L = boxCalculus.connectionLaplacian(f);
206 phi << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0;
207 //since connection laplacian transports the phi vectors to the face,
208 //it's not expected to have 0 since these vectors aren't actually the same
209 auto lphi = L*phi;
210 //but we can still check that L is semi-definite
211 double det = L.determinant()+1.;
212 REQUIRE( det == Approx(1.0));
213 REQUIRE( lphi[2] == Approx(-3.683));
214 }
215
216 SECTION("Covariant Operators")
217 {
219 auto nf = box.incidentVertices(f).size();
220
222 phi << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0;
223 auto CG = boxCalculus.covariantGradient(f,phi);
224 auto CP = boxCalculus.covariantProjection(f,phi);
225
226 //check sizes
227 REQUIRE( CG.rows() == 2);
228 REQUIRE( CG.cols() == 2);
229 REQUIRE( CP.rows() == (Eigen::Index)faces[f].size());
230 REQUIRE( CP.cols() == 2);
231
232 REQUIRE( CG(0,0) == Approx(0.707106));
233 REQUIRE( CP(0,0) == Approx(1.224744));
234 }
235 SECTION("Check lumped mass matrix")
236 {
238 double a=0.0;
239 for( PolygonalCalculus< RealPoint,RealVector >::MySurfaceMesh::Index v=0; v < box.nbVertices(); ++v )
240 a += M.coeffRef(v,v);
241
242 double fa=0.0;
244 fa += box.faceArea(f);
245 REQUIRE( a == fa );
246 }
247
248 SECTION("Checking cache")
249 {
250 auto cacheU = boxCalculus.getOperatorCacheMatrix( [&](const PolygonalCalculus< RealPoint,RealVector >::Face f){ return boxCalculus.sharp(f);} );
251 REQUIRE( cacheU.size() == 6 );
252
253 auto cacheC = boxCalculus.getOperatorCacheVector( [&](const PolygonalCalculus< RealPoint,RealVector >::Face f){ return boxCalculus.centroid(f);} );
254 REQUIRE( cacheC.size() == 6 );
255 }
256
257 SECTION("Internal cache")
258 {
259 PolygonalCalculus< RealPoint,RealVector > boxCalculusCached(box,true);
260 trace.info()<< boxCalculusCached <<std::endl;
261
262 trace.beginBlock("Without cache");
263 PolygonalCalculus< RealPoint,RealVector >::SparseMatrix L(box.nbVertices(),box.nbVertices());
264 for(auto i=0; i < 1000 ; ++i)
265 L += i*boxCalculus.globalLaplaceBeltrami();
266 auto tps = trace.endBlock();
267
268 trace.beginBlock("With cache");
269 PolygonalCalculus< RealPoint,RealVector >::SparseMatrix LC(box.nbVertices(),box.nbVertices());
270 for(auto i=0; i < 1000 ; ++i)
271 LC += i*boxCalculusCached.globalLaplaceBeltrami();
272 auto tpsC = trace.endBlock();
273 REQUIRE(tpsC < tps);
274 REQUIRE(L.norm() == Approx(LC.norm()));
275
276 }
277
278}
279
280TEST_CASE( "Testing PolygonalCalculus and DirichletConditions" )
281{
282 typedef Shortcuts< KSpace > SH3;
284 typedef Mesh::Index Index;
287
288 // Build a more complex surface.
289 auto params = SH3::defaultParameters();
290
291 params( "polynomial", "0.1*y*y -0.1*x*x - 2.0*z" )( "gridstep", 2.0 );
292 auto implicit_shape = SH3::makeImplicitShape3D ( params );
293 auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
294 auto K = SH3::getKSpace( params );
295 auto binary_image = SH3::makeBinaryImage( digitized_shape, params );
297 auto primalSurface = SH3::makePrimalSurfaceMesh(surface);
298
299 std::vector<std::vector< Index > > faces;
300 std::vector<RealPoint> positions = primalSurface->positions();
301 for( PolygonalCalculus< RealPoint,RealVector >::MySurfaceMesh::Index face= 0 ; face < primalSurface->nbFaces(); ++face)
302 faces.push_back(primalSurface->incidentVertices( face ));
303
304 Mesh surfmesh = Mesh( positions.begin(), positions.end(),
305 faces.begin(), faces.end() );
306 auto boundaryEdges = surfmesh.computeManifoldBoundaryEdges();
307
308 // Builds calculus and solve a Poisson problem with Dirichlet boundary conditions
309 PolyDEC calculus( surfmesh );
310 // Laplace opeartor
311 PolyDEC::SparseMatrix L = calculus.globalLaplaceBeltrami();
312 // value on boundary
313 PolyDEC::Vector g = calculus.form0();
314 // characteristic set of boundary
315 DC::IntegerVector b = DC::IntegerVector::Zero( g.rows() );
316
317 SECTION("Solve Poisson problem with boundary Dirichlet conditions")
318 {
319 for ( double scale = 0.1; scale < 2.0; scale *= 2.0 )
320 {
321 std::cout << "scale=" << scale << std::endl;
322 auto phi = [&]( Index v)
323 {
324 return cos(scale*(surfmesh.position(v)[0]))
325 * (scale*surfmesh.position(v)[1]);
326 };
327
328 for(auto &e: boundaryEdges)
329 {
330 auto adjVertices = surfmesh.edgeVertices(e);
331 auto v1 = adjVertices.first;
332 auto v2 = adjVertices.second;
333 g(v1) = phi(v1);
334 g(v2) = phi(v2);
335 b(v1) = 1;
336 b(v2) = 1;
337 }
338 // Solve Δu=0 with g as boundary conditions
339 PolyDEC::Solver solver;
340 PolyDEC::SparseMatrix L_dirichlet = DC::dirichletOperator( L, b );
341 solver.compute( L_dirichlet );
342 REQUIRE( solver.info() == Eigen::Success );
343 PolyDEC::Vector g_dirichlet = DC::dirichletVector( L, g, b, g );
344 PolyDEC::Vector x_dirichlet = solver.solve( g_dirichlet );
345 REQUIRE( solver.info() == Eigen::Success );
346 PolyDEC::Vector u = DC::dirichletSolution( x_dirichlet, b, g );
347 double min_phi = 0.0;
348 double max_phi = 0.0;
349 double min_u = 0.0;
350 double max_u = 0.0;
351 double min_i_u = 0.0;
352 double max_i_u = 0.0;
354 {
355 min_phi = std::min( min_phi, phi( v ) );
356 max_phi = std::max( max_phi, phi( v ) );
357 min_u = std::min( min_u , u ( v ) );
358 max_u = std::max( max_u , u ( v ) );
359 if ( b( v ) == 0.0 )
360 {
361 min_i_u = std::min( min_i_u, u ( v ) );
362 max_i_u = std::max( max_i_u, u ( v ) );
363 }
364 }
365 REQUIRE( min_phi <= min_u );
366 REQUIRE( max_phi >= max_u );
367 REQUIRE( min_phi < min_i_u );
368 REQUIRE( max_phi > max_i_u );
369 } // for ( double scale = 0.1; scale < 2.0; scale *= 2.0 )
370 }
371};
372
Aim: A helper class to solve a system with Dirichlet boundary conditions.
Aim: This class is defined to represent a surface mesh through a set of vertices and faces....
Definition Mesh.h:92
Size nbFaces() const
VertexStorage::size_type Index
Definition Mesh.h:120
Aim: Implements basic operations that will be used in Point and Vector classes.
Implements differential operators on polygonal surfaces from degoes2020discrete.
DenseMatrix D(const Face f) const
DenseMatrix laplaceBeltrami(const Face f, const double lambda=1.0) const
LinAlg::SparseMatrix SparseMatrix
Type of sparse matrix.
DenseMatrix X(const Face f) const
std::vector< DenseMatrix > getOperatorCacheMatrix(const std::function< DenseMatrix(Face)> &perFaceOperator) const
Vector faceNormal(const Face f) const
Vector centroid(const Face f) const
DenseMatrix curl(const Face f) const
Real3dVector faceNormalAsDGtalVector(const Face f) const
Real3dPoint centroidAsDGtalPoint(const Face f) const
DenseMatrix covariantProjection(const Face f, const Vector &uf)
Vector vectorArea(const Face f) const
size_t faceDegree(Face f) const
DenseMatrix P(const Face f) const
SparseMatrix globalLaplaceBeltrami(const double lambda=1.0) const
DenseMatrix sharp(const Face f) const
double faceArea(const Face f) const
std::vector< Vector > getOperatorCacheVector(const std::function< Vector(Face)> &perFaceVectorOperator) const
DenseMatrix coGradient(const Face f) const
DenseMatrix connectionLaplacian(const Face &f, double lambda=1.0) const
SparseMatrix globalLumpedMassMatrix() const
DenseMatrix gradient(const Face f) const
MySurfaceMesh::Face Face
Face type.
LinAlg::DenseVector Vector
Type of Vector.
DenseMatrix A(const Face f) const
DenseMatrix covariantGradient(const Face f, const Vector &uf)
DenseMatrix flat(const Face f) const
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
Definition Shortcuts.h:105
static KSpace getKSpace(const Point &low, const Point &up, Parameters params=parametersKSpace())
Definition Shortcuts.h:332
static CountedPtr< DigitizedImplicitShape3D > makeDigitizedImplicitShape3D(CountedPtr< ImplicitShape3D > shape, Parameters params=parametersDigitizedImplicitShape3D())
Definition Shortcuts.h:523
static CountedPtr< DigitalSurface > makeDigitalSurface(CountedPtr< TPointPredicate > bimage, const KSpace &K, const Parameters &params=parametersDigitalSurface())
Definition Shortcuts.h:1209
static Parameters defaultParameters()
Definition Shortcuts.h:203
static CountedPtr< SurfaceMesh > makePrimalSurfaceMesh(Cell2Index &c2i, CountedPtr< ::DGtal::DigitalSurface< TContainer > > aSurface)
Definition Shortcuts.h:2372
static CountedPtr< BinaryImage > makeBinaryImage(Domain shapeDomain)
Definition Shortcuts.h:561
static CountedPtr< ImplicitShape3D > makeImplicitShape3D(const Parameters &params=parametersImplicitShape3D())
Definition Shortcuts.h:282
void beginBlock(const std::string &keyword="")
std::ostream & info()
double endBlock()
SurfMesh surfmesh
PolygonalCalculus< SH3::RealPoint, SH3::RealVector >::Vector phi(const Face f)
PolyCalculus * calculus
CountedPtr< SH3::DigitalSurface > surface
CountedPtr< SH3::BinaryImage > binary_image
SMesh::Index Index
Space::RealPoint RealPoint
Definition StdDefs.h:170
DGtal is the top-level namespace which contains all DGtal functions and types.
Trace trace
Definition Common.h:153
STL namespace.
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces ...
Definition SurfaceMesh.h:92
std::size_t Index
The type used for numbering vertices and faces.
Edges computeManifoldBoundaryEdges() const
VertexPair edgeVertices(Edge e) const
RealPoint & position(Vertex v)
Size nbVertices() const
Shortcuts< KSpace > SH3
KSpace K
TEST_CASE("Testing PolygonalCalculus")
RealPoint vecToRealPoint(PolygonalCalculus< RealPoint, RealPoint >::Vector &v)
SECTION("Testing constant forward iterators")
REQUIRE(domain.isInside(aPoint))