139int main(
int argc,
char* argv[] )
147 using namespace DGtal;
154 std::string input = argv[ 1 ];
155 int m = argc > 2 ? atoi( argv[ 2 ] ) : 20;
156 int n = argc > 3 ? atoi( argv[ 3 ] ) : 20;
157 double R = argc > 4 ? atof( argv[ 4 ] ) : 0.5;
161 double exp_K1_min = 0.0;
162 double exp_K1_max = 0.0;
163 double exp_K2_min = 0.0;
164 double exp_K2_max = 0.0;
165 if ( input ==
"torus" )
167 const double big_radius = 3.0;
168 const double small_radius = 1.00001;
169 smesh = SMH::makeTorus( big_radius, small_radius,
171 SMH::NormalsType::VERTEX_NORMALS );
172 exp_K1_min = ( 1.0 / ( small_radius - big_radius ) );
173 exp_K1_max = ( 1.0 / ( big_radius + small_radius ) );
174 exp_K2_min = 1.0 / small_radius;
175 exp_K2_max = 1.0 / small_radius;
177 else if ( input ==
"sphere" )
179 const double radius = 2.0;
180 smesh = SMH::makeSphere( radius,
RealPoint { 0.0, 0.0, 0.0 }, m, n,
181 SMH::NormalsType::VERTEX_NORMALS );
182 exp_K1_min = 1.0 / radius;
183 exp_K1_max = 1.0 / radius;
184 exp_K2_min = 1.0 / radius;
185 exp_K2_max = 1.0 / radius;
187 else if ( input ==
"lantern" )
189 const double radius = 2.0;
190 smesh = SMH::makeLantern( radius, 1.0,
RealPoint { 0.0, 0.0, 0.0 }, m, n,
191 SMH::NormalsType::VERTEX_NORMALS );
194 exp_K2_min = 1.0 / radius;
195 exp_K2_max = 1.0 / radius;
203 auto mu0 = cnc.computeMu0();
204 auto muXY = cnc.computeMuXY();
210 std::vector< double > K1( smesh.nbFaces() );
211 std::vector< double > K2( smesh.nbFaces() );
212 std::vector< RealVector > D1( smesh.nbFaces() );
213 std::vector< RealVector > D2( smesh.nbFaces() );
215 smesh.computeFaceNormalsFromPositions();
216 for (
auto f = 0; f < smesh.nbFaces(); ++f )
218 const auto b = smesh.faceCentroid( f );
219 const auto N = smesh.faceNormals()[ f ];
220 const auto area = mu0 .measure( b, R, f );
221 const auto M = muXY.measure( b, R, f );
222 std::tie( K1[ f ], K2[ f ], D1[ f ], D2[ f ] )
223 = cnc.principalCurvatures( area, M, N );
228 auto K1_min_max = std::minmax_element( K1.cbegin(), K1.cend() );
229 auto K2_min_max = std::minmax_element( K2.cbegin(), K2.cend() );
230 std::cout <<
"Expected k1 curvatures:"
231 <<
" min=" << exp_K1_min <<
" max=" << exp_K1_max
233 std::cout <<
"Computed k1 curvatures:"
234 <<
" min=" << *K1_min_max.first <<
" max=" << *K1_min_max.second
236 std::cout <<
"Expected k2 curvatures:"
237 <<
" min=" << exp_K2_min <<
" max=" << exp_K2_max
239 std::cout <<
"Computed k2 curvatures:"
240 <<
" min=" << *K2_min_max.first <<
" max=" << *K2_min_max.second
247 const auto colormapK1 = makeQuantifiedColorMap(
makeColorMap( -0.625, 0.625 ) );
248 const auto colormapK2 = makeQuantifiedColorMap(
makeColorMap( -0.625, 0.625 ) );
249 auto colorsK1 = SMW::Colors( smesh.nbFaces() );
250 auto colorsK2 = SMW::Colors( smesh.nbFaces() );
251 for (
auto i = 0; i < smesh.nbFaces(); i++ )
253 colorsK1[ i ] = colormapK1( K1[ i ] );
254 colorsK2[ i ] = colormapK2( K2[ i ] );
256 SMW::writeOBJ(
"example-cnc-K1", smesh, colorsK1 );
257 SMW::writeOBJ(
"example-cnc-K2", smesh, colorsK2 );
258 const auto avg_e = smesh.averageEdgeLength();
259 SH::RealPoints positions( smesh.nbFaces() );
260 for (
auto f = 0; f < positions.size(); ++f )
262 D1[ f ] *= smesh.localWindow( f );
263 positions[ f ] = smesh.faceCentroid( f ) - 0.5 * D1[ f ];
265 SH::saveVectorFieldOBJ( positions, D1, 0.05 * avg_e, SH::Colors(),
267 SH::Color::Black, SH::Color( 0, 128, 0 ) );
268 for (
auto f = 0; f < positions.size(); ++f )
270 D2[ f ] *= smesh.localWindow( f );
271 positions[ f ] = smesh.faceCentroid( f ) - 0.5 * D2[ f ];
273 SH::saveVectorFieldOBJ( positions, D2, 0.05 * avg_e, SH::Colors(),
275 SH::Color::Black, SH::Color(128, 0,128 ) );