124int main(
int argc,
char* argv[] )
132 using namespace DGtal;
139 std::string input = argv[ 1 ];
140 int m = argc > 2 ? atoi( argv[ 2 ] ) : 20;
141 int n = argc > 3 ? atoi( argv[ 3 ] ) : 20;
142 double R = argc > 4 ? atof( argv[ 4 ] ) : 0.5;
146 double exp_K1_min = 0.0;
147 double exp_K1_max = 0.0;
148 double exp_K2_min = 0.0;
149 double exp_K2_max = 0.0;
150 if ( input ==
"torus" )
152 const double big_radius = 3.0;
153 const double small_radius = 1.00001;
154 smesh = SMH::makeTorus( big_radius, small_radius,
156 SMH::NormalsType::VERTEX_NORMALS );
157 exp_K1_min = ( 1.0 / ( small_radius - big_radius ) );
158 exp_K1_max = ( 1.0 / ( big_radius + small_radius ) );
159 exp_K2_min = 1.0 / small_radius;
160 exp_K2_max = 1.0 / small_radius;
162 else if ( input ==
"sphere" )
164 const double radius = 2.0;
165 smesh = SMH::makeSphere( radius,
RealPoint { 0.0, 0.0, 0.0 }, m, n,
166 SMH::NormalsType::VERTEX_NORMALS );
167 exp_K1_min = 1.0 / radius;
168 exp_K1_max = 1.0 / radius;
169 exp_K2_min = 1.0 / radius;
170 exp_K2_max = 1.0 / radius;
172 else if ( input ==
"lantern" )
174 const double radius = 2.0;
175 smesh = SMH::makeLantern( radius, 1.0,
RealPoint { 0.0, 0.0, 0.0 }, m, n,
176 SMH::NormalsType::VERTEX_NORMALS );
179 exp_K2_min = 1.0 / radius;
180 exp_K2_max = 1.0 / radius;
188 auto mu0 = nc.computeMu0();
189 auto muXY = nc.computeMuXY();
195 std::vector< double > K1( smesh.nbFaces() );
196 std::vector< double > K2( smesh.nbFaces() );
197 std::vector< RealVector > D1( smesh.nbFaces() );
198 std::vector< RealVector > D2( smesh.nbFaces() );
200 smesh.computeFaceNormalsFromPositions();
201 for (
auto f = 0; f < smesh.nbFaces(); ++f )
203 const auto b = smesh.faceCentroid( f );
204 const auto N = smesh.faceNormals()[ f ];
205 const auto area = mu0 .measure( b, R, f );
206 const auto M = muXY.measure( b, R, f );
207 std::tie( K1[ f ], K2[ f ], D1[ f ], D2[ f ] )
208 = nc.principalCurvatures( area, M, N );
213 auto K1_min_max = std::minmax_element( K1.cbegin(), K1.cend() );
214 auto K2_min_max = std::minmax_element( K2.cbegin(), K2.cend() );
215 std::cout <<
"Expected k1 curvatures:"
216 <<
" min=" << exp_K1_min <<
" max=" << exp_K1_max
218 std::cout <<
"Computed k1 curvatures:"
219 <<
" min=" << *K1_min_max.first <<
" max=" << *K1_min_max.second
221 std::cout <<
"Expected k2 curvatures:"
222 <<
" min=" << exp_K2_min <<
" max=" << exp_K2_max
224 std::cout <<
"Computed k2 curvatures:"
225 <<
" min=" << *K2_min_max.first <<
" max=" << *K2_min_max.second
232 const auto colormapK1 = makeQuantifiedColorMap(
makeColorMap( -0.625, 0.625 ) );
233 const auto colormapK2 = makeQuantifiedColorMap(
makeColorMap( -0.625, 0.625 ) );
234 auto colorsK1 = SMW::Colors( smesh.nbFaces() );
235 auto colorsK2 = SMW::Colors( smesh.nbFaces() );
236 for (
auto i = 0; i < smesh.nbFaces(); i++ )
238 colorsK1[ i ] = colormapK1( K1[ i ] );
239 colorsK2[ i ] = colormapK2( K2[ i ] );
241 SMW::writeOBJ(
"example-nc-K1", smesh, colorsK1 );
242 SMW::writeOBJ(
"example-nc-K2", smesh, colorsK2 );
243 const auto avg_e = smesh.averageEdgeLength();
244 SH::RealPoints positions( smesh.nbFaces() );
245 for (
auto f = 0; f < positions.size(); ++f )
247 D1[ f ] *= smesh.localWindow( f );
248 positions[ f ] = smesh.faceCentroid( f ) - 0.5 * D1[ f ];
250 SH::saveVectorFieldOBJ( positions, D1, 0.05 * avg_e, SH::Colors(),
252 SH::Color::Black, SH::Color( 0, 128, 0 ) );
253 for (
auto f = 0; f < positions.size(); ++f )
255 D2[ f ] *= smesh.localWindow( f );
256 positions[ f ] = smesh.faceCentroid( f ) - 0.5 * D2[ f ];
258 SH::saveVectorFieldOBJ( positions, D2, 0.05 * avg_e, SH::Colors(),
260 SH::Color::Black, SH::Color(128, 0,128 ) );