This example shows how to use tangency to compute shortest paths on 3D digital objects
The user selects two surfels (with shift + left click), and then shortest paths are computed and displayed.
#include <iostream>
#include <queue>
#include "DGtal/base/Common.h"
#include "DGtal/io/viewers/Viewer3D.h"
#include "DGtal/io/DrawWithDisplay3DModifier.h"
#include "DGtal/io/Color.h"
#include "DGtal/io/colormaps/SimpleDistanceColorMap.h"
#include "DGtal/shapes/Shapes.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/helpers/Shortcuts.h"
#include "DGtal/images/ImageContainerBySTLVector.h"
#include "DGtal/geometry/volumes/TangencyComputer.h"
#include "ConfigExamples.h"
typedef Space::Point
Point;
{
*selected = name;
std::cout << "Selected surfel=" << *selected << std::endl;
return 0;
}
int main(
int argc,
char** argv )
{
trace.
info() <<
"Usage: " << argv[ 0 ] <<
" <input.vol> <m> <M> <opt>" << std::endl;
trace.
info() <<
"\tComputes shortest paths to a source point" << std::endl;
trace.
info() <<
"\t- input.vol: choose your favorite shape" << std::endl;
trace.
info() <<
"\t- m [==0], M [==255]: used to threshold input vol image" << std::endl;
trace.
info() <<
"\t- opt >= sqrt(3): secure shortest paths, 0: fast" << std::endl;
string inputFilename = examplesPath + "samples/Al.100.vol";
std::string fn= argc > 1 ? argv[ 1 ] : inputFilename;
int m = argc > 2 ? atoi( argv[ 2 ] ) : 0;
int M = argc > 3 ? atoi( argv[ 3 ] ) : 255;
double opt = argc > 4 ? atof( argv[ 4 ] ) : sqrt(3.0);
QApplication application(argc,argv);
viewer.setWindowTitle("fullConvexityShortestPaths3D");
auto params = SH3::defaultParameters();
params( "thresholdMin", m )( "thresholdMax", M );
params( "surfaceComponents" , "All" );
trace.
info() <<
"Building set or importing vol ... ";
auto bimage = SH3::makeBinaryImage( fn, params );
K = SH3::getKSpace( bimage );
trace.
info() <<
" [Done]" << std::endl;
auto surface = SH3::makeDigitalSurface( bimage,
K, params );
std::vector< Point > points;
std::map< SCell, int > surfel2idx;
std::map< Point, int > point2idx;
int idx = 0;
{
auto voxel =
K.sIncident( s, k,
K.sDirect( s, k ) );
auto it = point2idx.find( p );
if ( it == point2idx.end() )
{
points.push_back( p );
surfel2idx[ s ] = idx;
point2idx [ p ] = idx++;
}
else
surfel2idx[ s ] = it->second;
}
trace.
info() <<
"Shape has " << points.size() <<
" interior boundary points"
<< std::endl;
auto surfels = SH3::getSurfelRange (
surface );
for ( int i = 0; i < 2; i++ )
{
MViewer3D viewerCore(
K );
viewerCore.show();
Color colSurfel( 200, 200, 255, 255 );
Color colStart( 255, 0, 0, 255 );
viewerCore <<
SetMode3D( surfels[ 0 ].className(),
"Basic");
viewerCore.setFillColor( colSurfel );
for (
auto && s : surfels ) viewerCore <<
SetName3D( name++ ) << s;
0, surfels.size() - 1 );
viewerCore << MViewer3D::updateDisplay;
application.exec();
}
const auto s0 = surfels[ selected_surfels[ 0 ] ];
auto voxel0 =
K.sIncident( s0, k0,
K.sDirect( s0, k0 ) );
Point p0 =
K.sCoords( voxel0 );
auto start0 = point2idx[ p0 ];
std::cout << "Start0 index is " << start0 << std::endl;
const auto s1 = surfels[ selected_surfels[ 1 ] ];
auto voxel1 =
K.sIncident( s1, k1,
K.sDirect( s1, k1 ) );
Point p1 =
K.sCoords( voxel1 );
auto start1 = point2idx[ p1 ];
std::cout << "Start1 index is " << start1 << std::endl;
TC.init( points.cbegin(), points.cend() );
auto SP = TC.makeShortestPaths( opt );
SP.init( start0 );
double last_distance = 0.0;
while ( ! SP.finished() )
{
last_distance = std::get<2>( SP.current() );
SP.expand();
}
std::cout << "Max distance is " << last_distance << std::endl;
{
const int nb_repetitions = 10;
const double period = last_distance / nb_repetitions;
MViewer3D viewerCore;
viewerCore.show();
Color colSurfel( 200, 200, 255, 128 );
Color colStart( 255, 0, 0, 128 );
viewerCore.setUseGLPointForBalls(true);
for ( auto i = 0; i < points.size(); ++i )
{
const double d_s = SP.distance( i );
Color c_s = cmap( fmod( d_s, period ) );
viewerCore.setFillColor( c_s );
viewerCore.addBall(
RealPoint( points[ i ][ 0 ],
points[ i ][ 1 ],
points[ i ][ 2 ] ), 12.0 );
}
viewerCore << MViewer3D::updateDisplay;
application.exec();
}
auto SP0 = TC.makeShortestPaths( opt );
auto SP1 = TC.makeShortestPaths( opt );
SP0.init( start0 );
SP1.init( start1 );
std::vector< Index > Q;
while ( ! SP0.finished() && ! SP1.finished() )
{
auto n0 = SP0.current();
auto n1 = SP1.current();
auto p0 = std::get<0>( n0 );
auto p1 = std::get<0>( n1 );
SP0.expand();
SP1.expand();
if ( SP0.isVisited( p1 ) )
{
auto c0 = SP0.pathToSource( p1 );
auto c1 = SP1.pathToSource( p1 );
std::copy(c0.rbegin(), c0.rend(), std::back_inserter(Q));
Q.pop_back();
std::copy(c1.begin(), c1.end(), std::back_inserter(Q));
break;
}
}
{
const int nb_repetitions = 10;
const double period = last_distance / nb_repetitions;
MViewer3D viewerCore;
viewerCore.show();
Color colSurfel( 200, 200, 255, 128 );
Color colStart( 255, 0, 0, 128 );
viewerCore.setUseGLPointForBalls(true);
for ( auto i = 0; i < points.size(); ++i )
{
const double d_s0 = SP0.isVisited( i ) ? SP0.distance( i ) : SP0.infinity();
const double d_s1 = SP1.isVisited( i ) ? SP1.distance( i ) : SP1.infinity();
const double d_s = std::min( d_s0, d_s1 );
Color c_s = ( d_s != SP0.infinity() )
? cmap( fmod( d_s, period ) )
viewerCore.setFillColor( c_s );
viewerCore.addBall(
RealPoint( points[ i ][ 0 ],
points[ i ][ 1 ],
points[ i ][ 2 ] ), 12 );
}
viewerCore.setLineColor( Color::Green );
for ( auto i = 1; i < Q.size(); i++ )
{
Point p1 = TC.point( Q[ i-1 ] );
Point p2 = TC.point( Q[ i ] );
viewerCore.addLine( p1, p2, 18.0 );
}
viewerCore << MViewer3D::updateDisplay;
application.exec();
}
std::vector< Index > sources;
std::vector< Index > dests;
for ( int i = 0; i < 20; i++ )
sources.push_back( rand() % TC.size() );
dests.push_back( start0 );
dests.push_back( start1 );
auto paths = TC.shortestPaths( sources, dests, opt );
{
MViewer3D viewerCore;
viewerCore.show();
Color colSurfel( 200, 200, 255, 128 );
Color colStart( 255, 0, 0, 128 );
viewerCore.setUseGLPointForBalls(true);
for ( auto i = 0; i < points.size(); ++i )
{
viewerCore.setFillColor(
Color( 150, 150, 150, 255 ) );
viewerCore.addBall(
RealPoint( points[ i ][ 0 ],
points[ i ][ 1 ],
points[ i ][ 2 ] ), 12 );
}
viewerCore.setLineColor( Color::Green );
for ( auto path : paths )
{
for ( auto i = 1; i < path.size(); i++ )
{
Point p1 = TC.point( path[ i-1 ] );
Point p2 = TC.point( path[ i ] );
viewerCore.addLine( p1, p2, 18.0 );
}
trace.
info() <<
"length=" << TC.length( path ) << std::endl;
}
viewerCore << MViewer3D::updateDisplay;
application.exec();
}
return 0;
}
Structure representing an RGB triple with alpha component.
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
Aim: simple blue to red colormap for distance information for instance.
Aim: A class that computes tangency to a given digital set. It provides services to compute all the c...
virtual void show()
Overload QWidget method in order to add a call to updateList() method (to ensure that the lists are w...
CountedPtr< SH3::DigitalSurface > surface
DigitalPlane::Point Vector
int reaction(void *viewer, DGtal::int32_t name, void *data)
DGtal is the top-level namespace which contains all DGtal functions and types.
DGtal::uint32_t Dimension
boost::int32_t int32_t
signed 32-bit integer.
Modifier class in a Display3D stream. Useful to choose your own mode for a given class....
Represents a signed cell in a cellular grid space by its Khalimsky coordinates and a boolean value.
HyperRectDomain< Space > Domain
PointVector< 3, double > RealPoint