169{
170 if ( argc <= 1 )
171 {
172 usage( argc, argv );
173 return 0;
174 }
176 using namespace DGtal;
183 std::string poly = argv[ 1 ];
184 const double B = argc > 2 ? atof( argv[ 2 ] ) : 1.0;
185 const double h = argc > 3 ? atof( argv[ 3 ] ) : 1.0;
186 const double R = argc > 4 ? atof( argv[ 4 ] ) : 2.0;
187 std::string mode = argc > 5 ? argv[ 5 ] : "Const";
188 bool interpolated = mode == "Interp";
189 if ( interpolated )
190 std::cout << "Using vertex-*Interpolated* Corrected Normal Current" << std::endl;
191 else
192 std::cout << "Using face-*Constant* Corrected Normal Current" << std::endl;
194
195 auto params = SH::defaultParameters() | SHG::defaultParameters();
196 params( "t-ring", 3 )( "surfaceTraversal", "Default" );
197 params( "polynomial", poly )( "gridstep", h );
198 params( "minAABB", -B )( "maxAABB", B );
199 params( "offset", 3.0 );
200 auto shape = SH::makeImplicitShape3D( params );
201 auto K = SH::getKSpace( params );
202 auto dshape = SH::makeDigitizedImplicitShape3D( shape, params );
203 auto bimage = SH::makeBinaryImage( dshape, params );
204 if ( bimage == nullptr )
205 {
206 trace.
error() <<
"Unable to read polynomial <"
207 << poly.c_str() << ">" << std::endl;
208 return 1;
209 }
210 auto sembedder = SH::getSCellEmbedder(
K );
211 auto embedder = SH::getCellEmbedder(
K );
212 auto surface = SH::makeDigitalSurface( bimage,
K, params );
213 auto surfels = SH::getSurfelRange( surface, params );
214 trace.
info() <<
"- surface has " << surfels.size()<<
" surfels." << std::endl;
216
218 SM smesh;
219 std::vector< SM::Vertices > faces;
220 SH::Cell2Index c2i;
221 auto pointels = SH::getPointelRange( c2i, surface );
222 auto vertices = SH::RealPoints( pointels.size() );
223 std::transform( pointels.cbegin(), pointels.cend(),
vertices.begin(),
224 [&] (const SH::Cell& c) { return h * embedder( c ); } );
225 for ( auto&& surfel : *surface )
226 {
227 const auto primal_surfel_vtcs = SH::getPointelRange(
K, surfel );
228 SM::Vertices face;
229 for ( auto&& primal_vtx : primal_surfel_vtcs )
230 face.push_back( c2i[ primal_vtx ] );
231 faces.push_back( face );
232 }
234 faces.cbegin(), faces.cend() );
237
239 auto exp_H = SHG::getMeanCurvatures( shape,
K, surfels, params );
240 auto exp_G = SHG::getGaussianCurvatures( shape,
K, surfels, params );
242
244
245 CNC cnc( smesh );
246
247 auto face_normals = SHG::getCTrivialNormalVectors( surface, surfels, params );
248
249
250 smesh.setFaceNormals( face_normals.cbegin(), face_normals.cend() );
251
252
253 if ( interpolated ) smesh.computeVertexNormalsFromFaceNormals();
254
255 auto mu0 = cnc.computeMu0();
256 auto mu1 = cnc.computeMu1();
257 auto mu2 = cnc.computeMu2();
259
261
262 std::vector< double >
H( smesh.nbFaces() );
263 std::vector< double > G( smesh.nbFaces() );
264 for ( auto f = 0; f < smesh.nbFaces(); ++f )
265 {
266 const auto b = smesh.faceCentroid( f );
267 const auto area = mu0.measure( b, R, f );
268 H[ f ] = cnc.meanCurvature ( area, mu1.measure( b, R, f ) );
269 G[ f ] = cnc.GaussianCurvature( area, mu2.measure( b, R, f ) );
270 }
272
274 auto H_min_max = std::minmax_element(
H.cbegin(),
H.cend() );
275 auto G_min_max = std::minmax_element( G.cbegin(), G.cend() );
276 auto exp_H_min_max = std::minmax_element( exp_H.cbegin(), exp_H.cend() );
277 auto exp_G_min_max = std::minmax_element( exp_G.cbegin(), exp_G.cend() );
278 std::cout << "Expected mean curvatures:"
279 << " min=" << *exp_H_min_max.first << " max=" << *exp_H_min_max.second
280 << std::endl;
281 std::cout << "Computed mean curvatures:"
282 << " min=" << *H_min_max.first << " max=" << *H_min_max.second
283 << std::endl;
284 std::cout << "Expected Gaussian curvatures:"
285 << " min=" << *exp_G_min_max.first << " max=" << *exp_G_min_max.second
286 << std::endl;
287 std::cout << "Computed Gaussian curvatures:"
288 << " min=" << *G_min_max.first << " max=" << *G_min_max.second
289 << std::endl;
290 const auto error_H = SHG::getScalarsAbsoluteDifference( H, exp_H );
291 const auto stat_error_H = SHG::getStatistic( error_H );
292 const auto error_H_l2 = SHG::getScalarsNormL2( H, exp_H );
293 trace.
info() <<
"|H-H_CNC|_oo = " << stat_error_H.max() << std::endl;
294 trace.
info() <<
"|H-H_CNC|_2 = " << error_H_l2 << std::endl;
295 const auto error_G = SHG::getScalarsAbsoluteDifference( G, exp_G );
296 const auto stat_error_G = SHG::getStatistic( error_G );
297 const auto error_G_l2 = SHG::getScalarsNormL2( G, exp_G );
298 trace.
info() <<
"|G-G_CNC|_oo = " << stat_error_G.max() << std::endl;
299 trace.
info() <<
"|G-G_CNC|_2 = " << error_G_l2 << std::endl;
301
303
304 smesh.vertexNormals() = SH::RealVectors();
305 smesh.faceNormals() = SH::RealVectors();
307 const double Hmax = std::max( fabs( *exp_H_min_max.first ),
308 fabs( *exp_H_min_max.second ) );
309 const double Gmax = std::max( fabs( *exp_G_min_max.first ),
310 fabs( *exp_G_min_max.second ) );
313 auto colorsH = SMW::Colors( smesh.nbFaces() );
314 auto colorsG = SMW::Colors( smesh.nbFaces() );
315 for ( auto i = 0; i < smesh.nbFaces(); i++ )
316 {
317 colorsH[ i ] = colormapH( H[ i ] );
318 colorsG[ i ] = colormapG( G[ i ] );
319 }
320 SMW::writeOBJ( "example-cnc-H", smesh, colorsH );
321 SMW::writeOBJ( "example-cnc-G", smesh, colorsG );
323 return 0;
324}
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
DGtal::GradientColorMap< double > makeColorMap(double min_value, double max_value)
[curvature-measures-Includes]
Z3i this namespace gathers the standard of types for 3D imagery.
DGtal is the top-level namespace which contains all DGtal functions and types.
QuantifiedColorMap< TColorMap > makeQuantifiedColorMap(TColorMap colormap, int nb=50)
std::pair< typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator, typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator > vertices(const DGtal::DigitalSurface< TDigitalSurfaceContainer > &digSurf)
Aim: Utility class to compute curvature measures induced by (1) a corrected normal current defined by...
Aim: An helper class for writing mesh file formats (Waverfront OBJ at this point) and creating a Surf...
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces ...