DGtal 1.3.0
Loading...
Searching...
No Matches
geometry/volumes/standardDigitalPolyhedronBuilder3D.cpp

This example shows how to use the fully convex envelope to build a digital polyhedron from an arbitrary mesh. All faces have also the property that their points lies in the naive/standard plane defined by its vertices. It uses DigitalConvexity::relativeEnvelope for computations.

See also
Digital polyhedra

For instance, you may call it on object "lion-tri.obj" as

standardDigitalPolyhedronBuilder3D ../examples/samples/lion-tri.obj 0.5 31

The last parameter specifies whether you want to see vertices (1) in black, edges common to both faces (2) in magenta, part of edges that are only on one face (4) and (8) (red on one side, blue on the other) and faces (16) in grey, or any combination.

(Symmetric) standard Digital polyhedral model of 'lion-tri.obj' at gridstep 0.5
(Symmetric) standard Digital polyhedral model of 'lion-tri.obj' at gridstep 0.5 (vertices and edges only)
namespace DGtal {
} // namespace DGtal {
#include <iostream>
#include <queue>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/io/viewers/Viewer3D.h"
#include "DGtal/shapes/Shapes.h"
#include "DGtal/shapes/SurfaceMesh.h"
#include "DGtal/io/readers/SurfaceMeshReader.h"
#include "DGtal/geometry/volumes/DigitalConvexity.h"
#include "ConfigExamples.h"
using namespace std;
using namespace DGtal;
typedef Z3i::Space Space;
typedef Z3i::SCell SCell;
typedef Space::Point Point;
typedef Space::RealPoint RealPoint;
typedef Space::RealVector RealVector;
typedef Space::Vector Vector;
typedef std::vector<Point> PointRange;
// Convenient class to represent different types of arithmetic planes as a predicate.
template < bool Naive, bool Symmetric >
struct MedianPlane {
Vector N;
Integer mu;
Integer omega;
MedianPlane() = default;
MedianPlane( const MedianPlane& other ) = default;
MedianPlane( MedianPlane&& other ) = default;
MedianPlane& operator=( const MedianPlane& other ) = default;
MedianPlane& operator=( MedianPlane&& other ) = default;
MedianPlane( Point p, Point q, Point r )
: N ( ( q - p ).crossProduct( r - p ) )
{
mu = N.dot( p );
omega = Naive ? N.norm( N.L_infty ) : N.norm( N.L_1 );
if ( Symmetric && ( ( omega & 1 ) == 0 ) ) omega += 1;
mu -= omega / 2;
}
bool operator()( const Point& p ) const
{
auto r = N.dot( p );
return ( mu <= r ) && ( r < mu+omega );
}
};
// Choose your plane !
// typedef MedianPlane< true, false > Plane; //< Naive, thinnest possible
// typedef MedianPlane< true, true > Plane; //< Naive, Symmetric
// typedef MedianPlane< false, false > Plane; //< Standard
typedef MedianPlane< false, true > Plane; //< Standard, Symmetric, thickest here
int main( int argc, char** argv )
{
trace.info() << "Usage: " << argv[ 0 ] << " <input.obj> <h> <view>" << std::endl;
trace.info() << "\tComputes a digital polyhedron from an OBJ file" << std::endl;
trace.info() << "\t- input.obj: choose your favorite mesh" << std::endl;
trace.info() << "\t- h [==1]: the digitization gridstep" << std::endl;
trace.info() << "\t- view [==31]: display vertices(1), common edges(2), positive side f edges(4), negative side f edges (8), faces(16)" << std::endl;
string filename = examplesPath + "samples/lion.obj";
std::string fn = argc > 1 ? argv[ 1 ] : filename; //< vol filename
double h = argc > 2 ? atof( argv[ 2 ] ) : 1.0;
int view = argc > 3 ? atoi( argv[ 3 ] ) : 31;
// Read OBJ file
std::ifstream input( fn.c_str() );
if ( ! ok )
{
trace.error() << "Unable to read obj file : " << fn << std::endl;
return 1;
}
QApplication application(argc,argv);
typedef Viewer3D<Space,KSpace> MViewer;
MViewer viewer;
viewer.setWindowTitle("standardDigitalPolyhedronBuilder3D");
viewer.show();
Point lo(-500,-500,-500);
Point up(500,500,500);
DigitalConvexity< KSpace > dconv( lo, up );
auto vertices = std::vector<Point>( surfmesh.nbVertices() );
for ( auto v : surfmesh )
{
RealPoint p = (1.0 / h) * surfmesh.position( v );
Point q ( (Integer) round( p[ 0 ] ),
(Integer) round( p[ 1 ] ),
(Integer) round( p[ 2 ] ) );
vertices[ v ] = q;
}
std::set< Point > faces_set, pos_edges_set, neg_edges_set;
auto faceVertices = surfmesh.allIncidentVertices();
trace.beginBlock( "Checking face planarity" );
std::vector< Plane > face_planes;
face_planes.resize( surfmesh.nbFaces() );
bool planarity = true;
for ( int f = 0; f < surfmesh.nbFaces() && planarity; ++f )
{
for ( auto v : faceVertices[ f ] )
X.push_back( vertices[ v ] );
face_planes[ f ] = Plane( X[ 0 ], X[ 1 ], X[ 2 ] );
for ( int v = 3; v < X.size(); v++ )
if ( ! face_planes[ f ]( X[ v ] ) )
{
trace.error() << "Face " << f << " is not planar." << std::endl;
planarity = false; break;
}
}
if ( ! planarity ) return 1;
trace.beginBlock( "Computing polyhedron" );
for ( int f = 0; f < surfmesh.nbFaces(); ++f )
{
for ( auto v : faceVertices[ f ] )
X.push_back( vertices[ v ] );
auto F = dconv.relativeEnvelope( X, face_planes[ f ], Algorithm::DIRECT );
faces_set.insert( F.cbegin(), F.cend() );
for ( int i = 0; i < X.size(); i++ )
{
PointRange Y { X[ i ], X[ (i+1)%X.size() ] };
if ( Y[ 1 ] < Y[ 0 ] ) std::swap( Y[ 0 ], Y[ 1 ] );
int idx1 = faceVertices[ f ][ i ];
int idx2 = faceVertices[ f ][ (i+1)%X.size() ];
// Variant (1): edges of both sides have many points in common
// auto A = dconv.relativeEnvelope( Y, face_planes[ f ], Algorithm::DIRECT );
// Variant (2): edges of both sides have much less points in common
auto A = dconv.relativeEnvelope( Y, F, Algorithm::DIRECT );
bool pos = idx1 < idx2;
(pos ? pos_edges_set : neg_edges_set).insert( A.cbegin(), A.cend() );
}
}
std::vector< Point > face_points, common_edge_points, arc_points, final_arc_points ;
std::vector< Point > pos_edge_points, neg_edge_points, both_edge_points;
std::vector< Point > vertex_points = vertices;
std::sort( vertex_points.begin(), vertex_points.end() );
std::set_symmetric_difference( pos_edges_set.cbegin(), pos_edges_set.cend(),
neg_edges_set.cbegin(), neg_edges_set.cend(),
std::back_inserter( arc_points ) );
std::set_intersection( pos_edges_set.cbegin(), pos_edges_set.cend(),
neg_edges_set.cbegin(), neg_edges_set.cend(),
std::back_inserter( common_edge_points ) );
std::set_union( pos_edges_set.cbegin(), pos_edges_set.cend(),
neg_edges_set.cbegin(), neg_edges_set.cend(),
std::back_inserter( both_edge_points ) );
std::set_difference( faces_set.cbegin(), faces_set.cend(),
both_edge_points.cbegin(), both_edge_points.cend(),
std::back_inserter( face_points ) );
std::set_difference( pos_edges_set.cbegin(), pos_edges_set.cend(),
common_edge_points.cbegin(), common_edge_points.cend(),
std::back_inserter( pos_edge_points ) );
std::set_difference( neg_edges_set.cbegin(), neg_edges_set.cend(),
common_edge_points.cbegin(), common_edge_points.cend(),
std::back_inserter( neg_edge_points ) );
std::set_difference( common_edge_points.cbegin(), common_edge_points.cend(),
vertex_points.cbegin(), vertex_points.cend(),
std::back_inserter( final_arc_points ) );
auto total = vertex_points.size() + pos_edge_points.size()
+ neg_edge_points.size()
+ final_arc_points.size() + face_points.size();
trace.info() << "#vertex points=" << vertex_points.size() << std::endl;
trace.info() << "#pos edge points=" << pos_edge_points.size() << std::endl;
trace.info() << "#neg edge points=" << neg_edge_points.size() << std::endl;
trace.info() << "#arc points=" << final_arc_points.size() << std::endl;
trace.info() << "#face points=" << face_points.size() << std::endl;
trace.info() << "#total points=" << total << std::endl;
// display everything
Color colors[] =
{ Color::Black, Color::Blue, Color::Red,
Color::Magenta, Color( 200, 200, 200 ) };
if ( view & 0x1 )
{
viewer.setLineColor( colors[ 0 ] );
viewer.setFillColor( colors[ 0 ] );
for ( auto p : vertices ) viewer << p;
}
if ( view & 0x2 )
{
viewer.setLineColor( colors[ 3 ] );
viewer.setFillColor( colors[ 3 ] );
for ( auto p : final_arc_points ) viewer << p;
}
if ( view & 0x4 )
{
viewer.setLineColor( colors[ 1 ] );
viewer.setFillColor( colors[ 1 ] );
for ( auto p : pos_edge_points ) viewer << p;
}
if ( view & 0x8 )
{
viewer.setLineColor( colors[ 2 ] );
viewer.setFillColor( colors[ 2 ] );
for ( auto p : neg_edge_points ) viewer << p;
}
if ( view & 0x10 )
{
viewer.setLineColor( colors[ 4 ] );
viewer.setFillColor( colors[ 4 ] );
for ( auto p : face_points ) viewer << p;
}
viewer << MViewer::updateDisplay;
return application.exec();
}
// //
Structure representing an RGB triple with alpha component.
Definition: Color.h:68
PointRange relativeEnvelope(const PointRange &Z, const PointRange &Y, EnvelopeAlgorithm algo=EnvelopeAlgorithm::DIRECT) const
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
void beginBlock(const std::string &keyword="")
std::ostream & error()
std::ostream & info()
double endBlock()
virtual void show()
Overload QWidget method in order to add a call to updateList() method (to ensure that the lists are w...
Z3i::SCell SCell
std::vector< Point > PointRange
DGtal::int32_t Integer
Definition: StdDefs.h:143
DGtal is the top-level namespace which contains all DGtal functions and types.
Trace trace
Definition: Common.h:154
std::pair< typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator, typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator > vertices(const DGtal::DigitalSurface< TDigitalSurfaceContainer > &digSurf)
STL namespace.
MedianPlane< false, true > Plane
Represents a signed cell in a cellular grid space by its Khalimsky coordinates and a boolean value.
Aim: An helper class for reading mesh files (Wavefront OBJ at this point) and creating a SurfaceMesh.
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces ...
Definition: SurfaceMesh.h:92
Z2i::RealPoint RealPoint
int main()
Definition: testBits.cpp:56
MyPointD Point
Definition: testClone2.cpp:383
FreemanChain< int >::Vector Vector
void insert(VContainer1 &c1, LContainer2 &c2, unsigned int idx, double v)
HyperRectDomain< Space > Domain