Loading [MathJax]/extensions/TeX/AMSsymbols.js
DGtal 2.0.0
ctopo-1-3d.cpp File Reference
#include <iostream>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/io/viewers/PolyscopeViewer.h"
Include dependency graph for ctopo-1-3d.cpp:

Go to the source code of this file.

Functions

int main (int argc, char **argv)

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Bertrand Kerautret (kerau.nosp@m.tre@.nosp@m.loria.nosp@m..fr ) LORIA (CNRS, UMR 7503), University of Nancy, France
Date
2011/05/13

An example file named ctopo-1-3d.cpp.

This file is part of the DGtal library.

Definition in file ctopo-1-3d.cpp.

Function Documentation

◆ main()

int main ( int argc,
char ** argv )

Definition at line 70 of file ctopo-1-3d.cpp.

71{
72 // for 3D display with PolyscopeViewer
73 KSpace K;
74 Point plow(0,0,0);
75 Point pup(3,3,2);
76 Domain domain( plow, pup );
77 K.init( plow, pup, true );
78 //
80
81 MyViewer viewer(K);
82 Cell ptlow = K.uPointel( plow ); // pointel (0*2,0*2, 0*2)
83 Cell ptup1 = K.uPointel( pup ); // pointel (3*2,3*2, 2*2)
84 Cell ptup2 = K.uTranslation( ptup1, Point::diagonal() ); // pointel (4*2, 4*2, 3*2)
85
86 viewer << ptlow << ptup1 << ptup2;
87
88 // drawing cells of dimension 0
89 Cell p1= K.uCell(Point(0,0,2)); // pointel (0*2,0*2,2*2)
90 Cell p2= K.uCell(Point(0,2,2)); // ...
91 Cell p3= K.uCell(Point(2,2,2));
92 Cell p4= K.uCell(Point(2,0,2));
93 Cell p5= K.uCell(Point(0,0,4));
94 Cell p6= K.uCell(Point(0,2,4));
95 Cell p7= K.uCell(Point(2,2,4));
96 Cell p8= K.uCell(Point(2,0,4));
97 viewer << p1 << p2 << p3 << p4 << p5 << p6 << p7 << p8;
98
99 // drawing Cells of dimension 1
100 Cell linel0 = K.uCell( Point( 1, 0, 2 ) ); // linel (2*1+1, 0, 2*2)
101 Cell linel1 = K.uCell( Point( 1, 2, 2 ) ); // ...
102 Cell linel2 = K.uCell( Point( 0, 1, 2 ) );
103 Cell linel3 = K.uCell( Point( 2, 1, 2 ) );
104
105 Cell linel4 = K.uCell( Point( 1, 0, 4 ) );
106 Cell linel5 = K.uCell( Point( 1, 2, 4 ) );
107 Cell linel6 = K.uCell( Point( 0, 1, 4 ) );
108 Cell linel7 = K.uCell( Point( 2, 1, 4 ) );
109
110 Cell linel8 = K.uCell( Point( 0, 0, 3 ) );
111 Cell linel9 = K.uCell( Point( 0, 2, 3 ) );
112 Cell linel10 = K.uCell( Point( 2, 0, 3 ) );
113 Cell linel11 = K.uCell( Point( 2, 2, 3 ) );
114
115
116 Cell linel12 = K.uCell( Point( 3, 2, 2 ) );
117
118 viewer << linel0<< linel1<< linel2 << linel3 ;
119 viewer << linel4<< linel5<< linel6 << linel7 ;
120 viewer << linel8<< linel9<< linel10 << linel11 << linel12;
121
122 // drawing cells of dimension 2
123
124 Cell surfelA = K.uCell( Point( 2, 1, 3 ) ); // surfel (2*2,2*1+1,2*3+1)
125 Cell surfelB = K.uCell( Point( 1, 0, 1 ) ); // surfel (2*1,2*0,2*1+1)
126 Cell surfelC = K.uCell( Point( 2, 1, 1 ) ); // surfel (2*2,2*1+1,2*1+1)
127 viewer << surfelA << surfelB << surfelC;
128
129 // drawing cells of dimension 3
130 Cell vox1 = K.uCell( Point( 3, 3, 3 ) ); // voxel (2*3+1,2*3+1,2*3+1)
131 Cell vox2 = K.uCell( Point( 1, 1, 3 ) ); // voxel (2*1+1,2*1+1,2*3+1)
132 viewer << vox1 << vox2;
133
134 viewer.show();
135 return 0;
136
137}
static Self diagonal(Component val=1)
KhalimskySpaceND< 3, Integer > KSpace
Definition StdDefs.h:146
Space::Point Point
Definition StdDefs.h:168
KSpace::Cell Cell
Definition StdDefs.h:148
KSpace K
Domain domain
PolyscopeViewer< Space, KSpace > MyViewer

References DGtal::PointVector< dim, Integer >::diagonal(), domain, K, and DGtal::PolyscopeViewer< Space, KSpace >::show().