DGtal 1.4.0
Loading...
Searching...
No Matches
testStandardDSLQ0-reversedSmartDSS-benchmark.cpp File Reference
#include <cstdlib>
#include <iostream>
#include "DGtal/base/Common.h"
#include "DGtal/kernel/CPointPredicate.h"
#include "DGtal/arithmetic/IntegerComputer.h"
#include "DGtal/arithmetic/SternBrocot.h"
#include "DGtal/arithmetic/Pattern.h"
#include "DGtal/arithmetic/StandardDSLQ0.h"
Include dependency graph for testStandardDSLQ0-reversedSmartDSS-benchmark.cpp:

Go to the source code of this file.

Functions

template<typename DSL >
bool checkSubStandardDSLQ0 (const DSL &D, const typename DSL::Point &A, const typename DSL::Point &B)
 
template<typename Fraction >
bool testSubStandardDSLQ0 (unsigned int nbtries, typename Fraction::Integer moda, typename Fraction::Integer modb, typename Fraction::Integer modx)
 
int main (int argc, char **argv)
 

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Jacques-Olivier Lachaud (jacqu.nosp@m.es-o.nosp@m.livie.nosp@m.r.la.nosp@m.chaud.nosp@m.@uni.nosp@m.v-sav.nosp@m.oie..nosp@m.fr ) Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
Date
2012/03/05

Functions for testing class SternBrocot.

This file is part of the DGtal library.

Definition in file testStandardDSLQ0-reversedSmartDSS-benchmark.cpp.

Function Documentation

◆ checkSubStandardDSLQ0()

template<typename DSL >
bool checkSubStandardDSLQ0 ( const DSL & D,
const typename DSL::Point & A,
const typename DSL::Point & B )

Definition at line 49 of file testStandardDSLQ0-reversedSmartDSS-benchmark.cpp.

52{
53 DSL S = D.reversedSmartDSS( A, B );
54 // std::cout << D.a() << " " << D.b() << " " << D.mu() << " "
55 // << S.a() << " " << S.b() << " " << S.mu() << " "
56 // << A[0] << " " << A[1] << " " << B[0] << " " << B[1]
57 // << std::endl;
58 return true;
59}

Referenced by testSubStandardDSLQ0().

◆ main()

int main ( int argc,
char ** argv )

Definition at line 122 of file testStandardDSLQ0-reversedSmartDSS-benchmark.cpp.

123{
125 typedef SB::Fraction Fraction;
126 typedef Fraction::Integer Integer;
127 unsigned int nbtries = ( argc > 1 ) ? atoi( argv[ 1 ] ) : 10000;
128 Integer moda = ( argc > 2 ) ? atoll( argv[ 2 ] ) : 1000000000000;
129 Integer modb = ( argc > 3 ) ? atoll( argv[ 3 ] ) : 1000000000000;
130 Integer modx = ( argc > 4 ) ? atoll( argv[ 4 ] ) : 1000;
131 testSubStandardDSLQ0<Fraction>( nbtries, moda, modb, modx );
132 return 0;
133}
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it pr...
Definition SternBrocot.h:78
bool testSubStandardDSLQ0()

References testSubStandardDSLQ0().

◆ testSubStandardDSLQ0()

template<typename Fraction >
bool testSubStandardDSLQ0 ( unsigned int nbtries,
typename Fraction::Integer moda,
typename Fraction::Integer modb,
typename Fraction::Integer modx )

Definition at line 62 of file testStandardDSLQ0-reversedSmartDSS-benchmark.cpp.

66{
67 typedef StandardDSLQ0<Fraction> DSL;
68 typedef typename Fraction::Integer Integer;
69 typedef typename DSL::Point Point;
71
72
73
74 std::cout << "# a b mu a1 b1 mu1 Ax Ay Bx By" << std::endl;
75
76
77 clock_t timeBegin, timeEnd;
78 timeBegin = clock();
79
80
81 for ( unsigned int i = 0; i < nbtries; ++i )
82 {
83 //Integer a( rand() % moda + 1 );
84 //Integer b( rand() % modb + 1 );
85
86 Integer b( rand() % modb + 1 );
87 Integer a( rand() % b + 1 );
88
89
90 if ( ic.gcd( a, b ) == 1 )
91 {
92 for ( int j = 0; j < 5; ++j )
93 {
94 Integer mu = rand() % (moda+modb);
95 DSL D( a, b, mu );
96 for ( Integer x = 0; x < 10; ++x )
97 {
98 Integer x1 = rand() % modx;
99 Integer x2 = x1 + 1 + ( rand() % modx );
100 Point A = D.lowestY( x1 );
101 Point B = D.lowestY( x2 );
103 }
104 }
105 }
106 }
107
108 timeEnd = clock();
109 long double CPUTime;
110 CPUTime = ((double)timeEnd-(double)timeBegin)/((double)CLOCKS_PER_SEC);
111
112 std::cout << " " << (long double) CPUTime/(nbtries*5*10);
113
114
115 return true;
116}
Aim: This class gathers several types and methods to make computation with integers.
Integer gcd(IntegerParamType a, IntegerParamType b) const
Aim: Represents a digital straight line with slope in the first quadrant (Q0: x >= 0,...
MyPointD Point
bool checkSubStandardDSLQ0(const DSL &D, const typename DSL::Point &A, const typename DSL::Point &B)

References checkSubStandardDSLQ0(), and DGtal::IntegerComputer< TInteger >::gcd().