Computes the zero level set of the given polynomial.
Usage: 3dImplicitSurfaceExtractorByThickening [options] input
Allowed options are :
-h [ --help ] display this message
-p [ --polynomial ] arg the implicit polynomial whose
zero-level defines the shape of
interest.
-a [ --minAABB ] arg (=-10) the min value of the AABB bounding box
(domain)
-A [ --maxAABB ] arg (=10) the max value of the AABB bounding box
(domain)
-g [ --gridstep ] arg (=1) the gridstep that defines the
digitization (often called h).
-t [ --thickness ] arg (=0.01) the thickening parameter for the
implicit surface.
-P [ --project ] arg (=Newton) defines the projection: either No or
Newton.
-e [ --epsilon ] arg (=9.9999999999999995e-07)
the maximum precision relative to the
implicit surface in the Newton
approximation of F=0.
-n [ --max_iter ] arg (=500) the maximum number of iteration in the
Newton approximation of F=0.
-v [ --view ] arg (=Normal) specifies if the surface is viewed as
is (Normal) or if places close to
singularities are highlighted
(Singular), or if unsure places should
not be displayed (Hide).
Example:
3dImplicitSurfaceExtractorByThickening -p "x^2-y*z^2" -g 0.1 -a -2 -A 2 -v Singular
You should obtain such a result:
resulting visualisation.
You could also use other implicit surfaces:
- whitney : x^2-y*z^2
- 4lines : x*y*(y-x)*(y-z*x)
- cone : z^2-x^2-y^2
- simonU : x^2-z*y^2+x^4+y^4
- cayley3 : 4*(x^2 + y^2 + z^2) + 16*x*y*z - 1
- crixxi : -0.9*(y^2+z^2-1)^2-(x^2+y^2-1)^3
Some other examples (more difficult):
3dImplicitSurfaceExtractorByThickening -a -2 -A 2 -p "((y^2+z^2-1)^2-(x^2+y^2-1)^3)*(y*(x-1)^2-z*(x+1))^2" -g 0.025 -e 1e-6 -n 50000 -v Singular -t 0.5 -P Newton
3dImplicitSurfaceExtractorByThickening -a -2 -A 2 -p "(x^5-4*z^3*y^2)*((x+y)^2-(z-x)^3)" -g 0.025 -e 1e-6 -n 50000 -v Singular -t 0.05 -P Newton
- See also
- 3dImplicitSurfaceExtractorByThickening.cpp