DGtal 1.3.0
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Protected Attributes
DGtal::LagrangeInterpolation< TEuclideanRing > Class Template Reference

Aim: This class implements Lagrange basis functions and Lagrange interpolation. More...

#include <DGtal/math/LagrangeInterpolation.h>

Public Types

typedef LagrangeInterpolation< TEuclideanRing > Self
 
typedef TEuclideanRing Ring
 
typedef DGtal::MPolynomial< 1, RingPolynomial
 The monovariate polynomial type. More...
 
typedef std::size_t Size
 

Public Member Functions

 BOOST_CONCEPT_ASSERT ((concepts::CEuclideanRing< Ring >))
 
 ~LagrangeInterpolation ()=default
 
 LagrangeInterpolation ()
 
 LagrangeInterpolation (const std::vector< Ring > &xvalues)
 
 LagrangeInterpolation (const LagrangeInterpolation &other)=default
 
 LagrangeInterpolation (LagrangeInterpolation &&other)=default
 
LagrangeInterpolationoperator= (const LagrangeInterpolation &other)=default
 
LagrangeInterpolationoperator= (LagrangeInterpolation &&other)=default
 
Size size () const
 
Size degree () const
 
Ring denominator () const
 
void init (const std::vector< Ring > &xvalues)
 
Polynomial polynomial (const std::vector< Ring > &yvalues)
 
Polynomial basis (Size i) const
 
void selfDisplay (std::ostream &that_stream) const
 
bool OK () const
 

Protected Attributes

std::vector< RingmyX
 The vector of X-values (abscissa) More...
 
Ring myDeterminant
 The determinant of the Vandermonde matrix corresponding to X-values. More...
 
std::vector< PolynomialmyLagrangeBasis
 The Lagrange polynomial basis corresponding to X-values. More...
 

Detailed Description

template<typename TEuclideanRing>
class DGtal::LagrangeInterpolation< TEuclideanRing >

Aim: This class implements Lagrange basis functions and Lagrange interpolation.

Description of class 'LagrangeInterpolation'

See also
testLagrangeInterpolation.cpp
Template Parameters
TEuclideanRingany model of CEuclideanRing like int, double, etc.

Definition at line 62 of file LagrangeInterpolation.h.

Member Typedef Documentation

◆ Polynomial

template<typename TEuclideanRing >
typedef DGtal::MPolynomial< 1, Ring > DGtal::LagrangeInterpolation< TEuclideanRing >::Polynomial

The monovariate polynomial type.

Definition at line 72 of file LagrangeInterpolation.h.

◆ Ring

template<typename TEuclideanRing >
typedef TEuclideanRing DGtal::LagrangeInterpolation< TEuclideanRing >::Ring

Definition at line 68 of file LagrangeInterpolation.h.

◆ Self

template<typename TEuclideanRing >
typedef LagrangeInterpolation< TEuclideanRing > DGtal::LagrangeInterpolation< TEuclideanRing >::Self

Definition at line 67 of file LagrangeInterpolation.h.

◆ Size

template<typename TEuclideanRing >
typedef std::size_t DGtal::LagrangeInterpolation< TEuclideanRing >::Size

Definition at line 73 of file LagrangeInterpolation.h.

Constructor & Destructor Documentation

◆ ~LagrangeInterpolation()

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::~LagrangeInterpolation ( )
default

Destructor.

◆ LagrangeInterpolation() [1/4]

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::LagrangeInterpolation ( )
inline

Constructor. The object is invalid.

Definition at line 86 of file LagrangeInterpolation.h.

88 {}
Ring myDeterminant
The determinant of the Vandermonde matrix corresponding to X-values.
static const std::decay< T >::type ZERO
Constant Zero.
Definition: NumberTraits.h:100

◆ LagrangeInterpolation() [2/4]

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::LagrangeInterpolation ( const std::vector< Ring > &  xvalues)
inline

Constructs the Lagrange interpolation object with its x-values

Parameters
xvaluesthe vector of X-values, corresponding to the abscissa where the interpolation will take place.

Definition at line 94 of file LagrangeInterpolation.h.

95 {
96 init( xvalues );
97 }
void init(const std::vector< Ring > &xvalues)

References DGtal::LagrangeInterpolation< TEuclideanRing >::init().

◆ LagrangeInterpolation() [3/4]

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::LagrangeInterpolation ( const LagrangeInterpolation< TEuclideanRing > &  other)
default

Copy constructor.

Parameters
otherthe object to clone.

◆ LagrangeInterpolation() [4/4]

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::LagrangeInterpolation ( LagrangeInterpolation< TEuclideanRing > &&  other)
default

Move constructor.

Parameters
otherthe object to clone.

Member Function Documentation

◆ basis()

template<typename TEuclideanRing >
Polynomial DGtal::LagrangeInterpolation< TEuclideanRing >::basis ( Size  i) const
inline
Parameters
iany value between 0 included and size() excluded.
Returns
the numerator of i-th Lagrange basis polynomial (divide by denominator to get the exact Lagrange basis polynomial).

Definition at line 199 of file LagrangeInterpolation.h.

200 {
201 ASSERT( 0 <= i && i < size() );
202 return myLagrangeBasis[ i ];
203 }
std::vector< Polynomial > myLagrangeBasis
The Lagrange polynomial basis corresponding to X-values.

References DGtal::LagrangeInterpolation< TEuclideanRing >::myLagrangeBasis, and DGtal::LagrangeInterpolation< TEuclideanRing >::size().

Referenced by DGtal::LagrangeInterpolation< TEuclideanRing >::selfDisplay().

◆ BOOST_CONCEPT_ASSERT()

template<typename TEuclideanRing >
DGtal::LagrangeInterpolation< TEuclideanRing >::BOOST_CONCEPT_ASSERT ( (concepts::CEuclideanRing< Ring >)  )

◆ degree()

template<typename TEuclideanRing >
Size DGtal::LagrangeInterpolation< TEuclideanRing >::degree ( ) const
inline
Returns
the degree of Lagrange polynomials (i.e. size()-1)

Definition at line 132 of file LagrangeInterpolation.h.

133 {
134 return size() - 1;
135 }

References DGtal::LagrangeInterpolation< TEuclideanRing >::size().

◆ denominator()

template<typename TEuclideanRing >
Ring DGtal::LagrangeInterpolation< TEuclideanRing >::denominator ( ) const
inline
Returns
the common denominator to Lagrange bases and Lagrange polynomial.

Definition at line 138 of file LagrangeInterpolation.h.

139 {
140 return myDeterminant;
141 }

References DGtal::LagrangeInterpolation< TEuclideanRing >::myDeterminant.

Referenced by DGtal::EhrhartPolynomial< TSpace, TInteger >::init().

◆ init()

template<typename TEuclideanRing >
void DGtal::LagrangeInterpolation< TEuclideanRing >::init ( const std::vector< Ring > &  xvalues)
inline

Initializes the Lagrange interpolation object with its x-values, and computes the corresponding Lagrange Basis.

Parameters
xvaluesthe vector of X-values, corresponding to the abscissa where the interpolation will take place.

Definition at line 148 of file LagrangeInterpolation.h.

149 {
150 myX = xvalues;
151 // Compute Vandermonde determinant
153 for ( Dimension i = 0; (i+1) < size(); ++i )
154 for ( Dimension j = i + 1; j < size(); ++j )
155 myDeterminant *= myX[ j ] - myX[ i ];
156 // compute Lagrange polynomial basis.
157 myLagrangeBasis.clear();
158 myLagrangeBasis.reserve( size() );
159 for ( Dimension j = 0; j < size(); ++j )
160 {
161 Ring c = myDeterminant;
162 for ( Dimension m = 0; m < size(); ++m )
163 if ( m != j )
164 c /= myX[ j ] - myX[ m ];
165 Polynomial P = c; // constant
166 for ( Dimension m = 0; m < size(); ++m )
167 if ( m != j )
168 P *= mmonomial<Ring>( 1 ) - myX[ m ] * mmonomial<Ring>( 0 );
169 myLagrangeBasis.push_back( P );
170 }
171 }
DGtal::MPolynomial< 1, Ring > Polynomial
The monovariate polynomial type.
std::vector< Ring > myX
The vector of X-values (abscissa)
DGtal::uint32_t Dimension
Definition: Common.h:137
static const std::decay< T >::type ONE
Constant One.
Definition: NumberTraits.h:103

References DGtal::LagrangeInterpolation< TEuclideanRing >::myDeterminant, DGtal::LagrangeInterpolation< TEuclideanRing >::myLagrangeBasis, DGtal::LagrangeInterpolation< TEuclideanRing >::myX, and DGtal::LagrangeInterpolation< TEuclideanRing >::size().

Referenced by DGtal::LagrangeInterpolation< TEuclideanRing >::LagrangeInterpolation().

◆ OK()

template<typename TEuclideanRing >
bool DGtal::LagrangeInterpolation< TEuclideanRing >::OK ( ) const
inline

Checks the validity/consistency of the object.

Returns
'true' if the object is valid, 'false' otherwise.

Definition at line 224 of file LagrangeInterpolation.h.

225 {
227 }

References DGtal::LagrangeInterpolation< TEuclideanRing >::myDeterminant.

◆ operator=() [1/2]

template<typename TEuclideanRing >
LagrangeInterpolation & DGtal::LagrangeInterpolation< TEuclideanRing >::operator= ( const LagrangeInterpolation< TEuclideanRing > &  other)
default

Assignment.

Parameters
otherthe object to copy.
Returns
a reference on 'this'.

◆ operator=() [2/2]

template<typename TEuclideanRing >
LagrangeInterpolation & DGtal::LagrangeInterpolation< TEuclideanRing >::operator= ( LagrangeInterpolation< TEuclideanRing > &&  other)
default

Move assignment.

Parameters
otherthe object to move.
Returns
a reference on 'this'.

◆ polynomial()

template<typename TEuclideanRing >
Polynomial DGtal::LagrangeInterpolation< TEuclideanRing >::polynomial ( const std::vector< Ring > &  yvalues)
inline
Parameters
[in]yvaluesthe y-values corresponding to the current x-values, in the same order.
Returns
the numerator of the Lagrange polynomial that interpolates all given values (divide by denominator to get the exact Lagrange polynomial).
Note
if yvalues has not the correct size, then the zero polynomial is returned.

Definition at line 182 of file LagrangeInterpolation.h.

183 {
184 Polynomial P;
185 if ( yvalues.size() != size() ) return P;
186 for ( Dimension j = 0; j < size(); ++j )
187 P += yvalues[ j ] * myLagrangeBasis[ j ];
188 return P;
189 }

References DGtal::LagrangeInterpolation< TEuclideanRing >::myLagrangeBasis, and DGtal::LagrangeInterpolation< TEuclideanRing >::size().

Referenced by DGtal::EhrhartPolynomial< TSpace, TInteger >::init().

◆ selfDisplay()

template<typename TEuclideanRing >
void DGtal::LagrangeInterpolation< TEuclideanRing >::selfDisplay ( std::ostream &  that_stream) const
inline

Writes/Displays the object on an output stream.

Parameters
that_streamthe output stream where the object is written.

Definition at line 212 of file LagrangeInterpolation.h.

213 {
214 that_stream << "[LagrangeInterpolation det=" << myDeterminant << std::endl;
215 for ( Size i = 0; i < size(); i++ )
216 that_stream << "l_" << i << "=" << basis( i ) << std::endl;
217 that_stream << "]";
218 }
Polynomial basis(Size i) const
HalfEdgeDataStructure::Size Size

References DGtal::LagrangeInterpolation< TEuclideanRing >::basis(), DGtal::LagrangeInterpolation< TEuclideanRing >::myDeterminant, and DGtal::LagrangeInterpolation< TEuclideanRing >::size().

Referenced by DGtal::operator<<().

◆ size()

template<typename TEuclideanRing >
Size DGtal::LagrangeInterpolation< TEuclideanRing >::size ( ) const
inline

Field Documentation

◆ myDeterminant

template<typename TEuclideanRing >
Ring DGtal::LagrangeInterpolation< TEuclideanRing >::myDeterminant
protected

◆ myLagrangeBasis

template<typename TEuclideanRing >
std::vector<Polynomial> DGtal::LagrangeInterpolation< TEuclideanRing >::myLagrangeBasis
protected

◆ myX

template<typename TEuclideanRing >
std::vector< Ring > DGtal::LagrangeInterpolation< TEuclideanRing >::myX
protected

The documentation for this class was generated from the following file: