DGtal 1.3.0
|
#include <DGtal/math/MPolynomial.h>
Data Structures | |
class | EvalFun |
class | EvalFun2 |
Public Types | |
typedef TRing | Ring |
typedef TOwner | Owner |
typedef TAlloc | Alloc |
typedef TX | X |
typedef MPolynomial< n, Ring, Alloc > | MPolyN |
Type for the multivariate polynomial. More... | |
typedef MPolynomial< n - 1, X, typename Alloc::template rebind< X >::other > | MPolyNM1 |
Public Member Functions | |
operator MPolyNM1 () const | |
template<typename XX > | |
MPolynomialEvaluatorImpl< n - 1, Ring, MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X >, Alloc, XX > | operator() (const XX &x) const |
Private Member Functions | |
MPolynomialEvaluatorImpl (const Owner &owner, const X &evalpoint) | |
template<typename XX , typename Fun > | |
void | evaluate (XX &res, const Fun &evalfun) const |
Private Attributes | |
const Owner & | myOwner |
const X & | myEvalPoint |
Friends | |
template<int nn, class TT , class AA , class SS > | |
class | MPolynomialEvaluator |
template<int nn, class TT , class HLHL , class AA , class SS > | |
class | MPolynomialEvaluatorImpl |
Description of template class 'MPolynomialEvaluatorImpl'
Another helper for polynomial evaluation. This template is returned from MPolynomialEvaluator<n, TRing, TAlloc>::operator().
The template parameter TOwner is the type of the "owner" of this template, i.e. either MPolynomialEvaluator<n+1, TRing, TAlloc> or MPolynomialEvaluatorImpl<n+1, TRing, ..., TAlloc>.
This class is a backport from Spielwiese.
Definition at line 182 of file MPolynomial.h.
typedef TAlloc DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Alloc |
Definition at line 187 of file MPolynomial.h.
typedef MPolynomial< n, Ring, Alloc> DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::MPolyN |
Type for the multivariate polynomial.
Definition at line 190 of file MPolynomial.h.
typedef MPolynomial< n - 1, X, typename Alloc::template rebind<X>::other > DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::MPolyNM1 |
Type for the "child" multivariate polynomial, where the first variable X has been substituted by its value. Note that the ring type has been substituted by the type of the variable (i.e. X).
Definition at line 199 of file MPolynomial.h.
typedef TOwner DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Owner |
Definition at line 186 of file MPolynomial.h.
typedef TRing DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Ring |
Definition at line 185 of file MPolynomial.h.
typedef TX DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::X |
Definition at line 188 of file MPolynomial.h.
|
inlineprivate |
Definition at line 212 of file MPolynomial.h.
|
inlineprivate |
This will be called from a child (i.e. a class of type MPolynomialEvaluatorImpl<n-1, Ring, MPolynomialEvaluator<n,Ring,Owner,Alloc,X>, Alloc, X>) to trigger evaluation.
Definition at line 261 of file MPolynomial.h.
References DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::myOwner.
|
inline |
Allows casting to poly<n-1, S>.
Definition at line 309 of file MPolynomial.h.
References DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::myOwner.
|
inline |
Continues evaluation with the next indeterminant. Functor returining a "child" evaluator implementation.
x | the next indeterminant. |
Definition at line 328 of file MPolynomial.h.
|
friend |
Definition at line 202 of file MPolynomial.h.
|
friend |
Definition at line 205 of file MPolynomial.h.
|
private |
Definition at line 209 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::EvalFun::operator()(), and DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::EvalFun< XX, Fun >::operator()().
|
private |
Definition at line 208 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::evaluate(), DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::operator MPolyNM1(), and DGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::operator X().