DGtal 1.3.0
Searching...
No Matches
DGtal::Xe_kComputer< n, Ring, Alloc > Class Template Reference

#include <DGtal/math/MPolynomial.h>

## Public Member Functions

Xe_kComputer ()

MPolynomial< n, Ring, Alloc > get (unsigned int k, unsigned int e)

## Detailed Description

template<int n, typename Ring, typename Alloc>
class DGtal::Xe_kComputer< n, Ring, Alloc >

Creates a monomial X_k^e

Template Parameters
 n the number of indetermionates. Ring the type for the coefficent ring of the polynomial. Alloc the type of allocator.

Definition at line 1603 of file MPolynomial.h.

## ◆ Xe_kComputer()

template<int n, typename Ring , typename Alloc >
 DGtal::Xe_kComputer< n, Ring, Alloc >::Xe_kComputer ( )
inline

Definition at line 1606 of file MPolynomial.h.

1606{}

## ◆ get()

template<int n, typename Ring , typename Alloc >
 MPolynomial< n, Ring, Alloc > DGtal::Xe_kComputer< n, Ring, Alloc >::get ( unsigned int k, unsigned int e )
inline
Parameters
 k the index of the variable (X_k) e the exponent for X_k
Returns
the 1-variable polynomial X_0^e

Definition at line 1614 of file MPolynomial.h.

1615 {
1616 MPolynomial<n, Ring, Alloc> p;
1617 if ( k == 0 )
1618 p[e] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1619 else
1620 p[0] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1621 p.normalize();
1622 //std::cerr << "Xe_k(" << k << "," << e << ")=" << p << std::endl;
1623 return p;
1624 }
MPolynomial< n, Ring, Alloc > get(unsigned int k, unsigned int e)
Definition: MPolynomial.h:1614

References DGtal::Xe_kComputer< n, Ring, Alloc >::get().

Referenced by DGtal::Xe_kComputer< n, Ring, Alloc >::get(), and DGtal::Xe_k().

The documentation for this class was generated from the following file: