DGtal 1.3.0
Loading...
Searching...
No Matches
Functions
testDSLSubsegment.cpp File Reference
#include <iostream>
#include "DGtal/base/Common.h"
#include <map>
#include "DGtal/geometry/curves/DSLSubsegment.h"
#include "DGtal/arithmetic/StandardDSLQ0.h"
#include "DGtal/kernel/CPointPredicate.h"
#include "DGtal/arithmetic/IntegerComputer.h"
#include "DGtal/arithmetic/SternBrocot.h"
#include "DGtal/arithmetic/LighterSternBrocot.h"
#include "DGtal/arithmetic/LightSternBrocot.h"
#include "DGtal/arithmetic/Pattern.h"
#include "DGtal/geometry/curves/ArithDSSIterator.h"
#include "DGtal/geometry/curves/ArithmeticalDSSComputer.h"
#include "DGtal/base/Clock.h"

Go to the source code of this file.

Functions

template<typename Integer , typename Fraction >
bool testDSLSubsegment (Integer modb)
 
int main ()
 

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Isabelle Sivignon (isabe.nosp@m.lle..nosp@m.sivig.nosp@m.non@.nosp@m.gipsa.nosp@m.-lab.nosp@m..gren.nosp@m.oble.nosp@m.-inp..nosp@m.fr ) gipsa-lab Grenoble Images Parole Signal Automatique (CNRS, UMR 5216), CNRS, France
Date
2013/09/16

Functions for testing class DSLSubsegment.

Definition in file testDSLSubsegment.cpp.

Function Documentation

◆ main()

int main ( void  )

Definition at line 209 of file testDSLSubsegment.cpp.

210{
211 typedef DGtal::int64_t Integer;
213 typedef LSB::Fraction Fraction;
214
215 trace.beginBlock ( "Testing class DSLSubsegment" );
216 trace.info() << std::endl;
217
218 Integer i = 1000;
219 srand((unsigned int)time(NULL));
220
221 bool res = testDSLSubsegment<Integer,Fraction>(i);
222
223 trace.emphase() << ( res ? "Passed." : "Error." ) << endl;
224 trace.endBlock();
225
226 return res ? 0 : 1;
227
228}
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it pr...
void beginBlock(const std::string &keyword="")
std::ostream & emphase()
std::ostream & info()
double endBlock()
boost::int64_t int64_t
signed 94-bit integer.
Definition: BasicTypes.h:74
Trace trace
Definition: Common.h:154
srand(0)

References DGtal::Trace::beginBlock(), DGtal::Trace::emphase(), DGtal::Trace::endBlock(), DGtal::Trace::info(), srand(), and DGtal::trace.

◆ testDSLSubsegment()

template<typename Integer , typename Fraction >
bool testDSLSubsegment ( Integer  modb)

Definition at line 58 of file testDSLSubsegment.cpp.

59{
60 //typedef long double Number;
62 //typedef DGtal::DSLSubsegment<Integer,Number> DSLSubsegD;
63
64
65 typedef ArithDSSIterator<Integer,8> DSSIterator;
66 typedef NaiveDSS8<Integer> ArithDSS;
67
68 typedef typename DSLSubseg::Point Point;
69
70 typedef StandardDSLQ0<Fraction> DSL;
71 typedef typename DSL::Point PointDSL;
72
74
75
76 // Draw random value for b in [0,modb]
77 Integer b( rand() % modb +1);
78
79 // Draw random value for a in [0,b]
80 Integer a( rand() % b +1);
81 // Draw a new a while a and b are not coprime (do not divide by
82 // the gcd so that b remains in the required interval)
83 while(ic.gcd(a,b) !=1)
84 a = rand() %b +1;
85
86 // Draw random value for mu in [0,2modb]
87 Integer mu = rand() % (2*modb);
88
89 Integer l = 200; // max length of the DSSs
90
91 // Draw random values for the subsegment first extremity abscissa
92 Integer xf = rand() % modb;
93
94 trace.beginBlock("Draw random values for a,b,mu and abscissa of the first point");
95 trace.info() << "a b mu xf:" << a << " " << b << " " << mu << " " << xf << std::endl;
97 trace.info() << std::endl;
98
99 int error1 = 0;
100 // Consider the subsegment S of the line (a,b,mu), with xf <= x < xf+l
101 // Test all the subsegments of S
102
103 trace.beginBlock("Compare DSLSubsegment/Farey fan with ArithmeticalDSS algorithm");
104 for(unsigned int i = 0; i<l; i++)
105 for(unsigned int j = i+1; j<l; j++)
106 {
107 Integer x1 = xf+i;
108 Integer x2 = xf+j;
109
110 Integer y1 = ic.floorDiv(a*x1+mu,b);
111 Integer y2 = ic.floorDiv(a*x2+mu,b);
112 Point A = Point(x1,y1);
113 Point B = Point(x2,y2);
114
115 // DSLSubsegment with Farey Fan (O(log(n))
116 DSLSubseg DSLsub(a,b,mu,A,B,"farey");
117
118
119 // ArithmeticalDSS recognition algorithm (O(n))
120 DSSIterator it(a,b,-mu,A);
121 ArithDSS myDSS(*it, *it);
122 ++it;
123 while ( (*it)[0] <=x2 && myDSS.extendFront(*it))
124 { ++it; }
125
126 // If results are different, count an error
127 if(DSLsub.getA() != myDSS.a() || DSLsub.getB() != myDSS.b() || DSLsub.getMu() != - myDSS.mu())
128 error1 ++;
129 }
130 trace.info() << error1 << " errors." << std::endl;
131 trace.endBlock();
132 trace.info() << std::endl;
133
134 int error2 = 0;
135 trace.beginBlock("Compare DSLSubsegment/localCH with DSLSubsegment/FareyFan");
136 for(unsigned int i = 0; i<l; i++)
137 for(unsigned int j = i+1; j<l; j++)
138 {
139 Integer x1 = xf+i;
140 Integer x2 = xf+j;
141
142 Integer y1 = ic.floorDiv(a*x1+mu,b);
143 Integer y2 = ic.floorDiv(a*x2+mu,b);
144 Point A = Point(x1,y1);
145 Point B = Point(x2,y2);
146
147 // DSLSubsegment with local CH (O(log(n))
148 DSLSubseg DSLsubCH(a,b,mu,A,B,"localCH");
149
150 // DSLSubsegment with Farey Fan (O(log(n))
151 DSLSubseg DSLsubF(a,b,mu,A,B,"farey");
152
153
154 // If results are different, count an error
155 if(DSLsubCH.getA() != DSLsubF.getA() || DSLsubCH.getB() != DSLsubF.getB() || DSLsubCH.getMu() != DSLsubF.getMu())
156 error2 ++;
157
158 }
159 trace.info() << error2 << " errors." << std::endl;
160 trace.endBlock();
161 trace.info() << std::endl;
162
163 int error3 = 0;
164 trace.beginBlock("Compare DSLSubsegment/FareyFan with ReversedSmartDSS for 4-connected DSL");
165 for(unsigned int i = 0; i<l; i++)
166 for(unsigned int j = i+1; j<l; j++)
167 {
168 Integer x1 = xf+i;
169 Integer x2 = xf+j;
170
171 DSL D( a, b, mu );
172 PointDSL AA = D.lowestY( x1 );
173 PointDSL BB = D.lowestY( x2 );
174
175 // ReversedSmartDSS algorithm
176 DSL S = D.reversedSmartDSS(AA,BB);
177
178 // DSLSubsegment algorithm for 4-connected DSL.
179 // Application of an horizontal shear transform
180 Point A2 = AA;
181 A2[0] += A2[1];
182 Point B2 = BB;
183 B2[0] += B2[1];
184
185 // DSLSubsegment algorithm works with the definition 0 <= ab -by + mu <
186 // b whereas reversedSmartDSS uses mu <= ab-by < mu + b
187 // => -mu is introduced in order to compare the results
188
189 DSLSubseg D2(a,a+b,-mu,A2,B2,"farey");
190 // The result is (aa,getB()-aa, nu)
191 // Compare results of DSLsubseg4 and reversedSmartDSS
192 if(!(D2.getA()==S.a() && (D2.getB()-D2.getA())==S.b() && D2.getMu()==-S.mu()))
193 error3 ++;
194
195 }
196 trace.info() << error3 << " errors." << std::endl;
197 trace.endBlock();
198 trace.info() << std::endl;
199
200 return (error1==0 && error2==0 && error3==0);
201
202}
Aim: An iterator on the points of a Digital Straight Segment. Template parameters are the integer typ...
Aim: Given a Digital Straight line and two endpoints A and B on this line, compute the minimal charac...
Definition: DSLSubsegment.h:76
Aim: This class gathers several types and methods to make computation with integers.
Integer gcd(IntegerParamType a, IntegerParamType b) const
Integer floorDiv(IntegerParamType na, IntegerParamType nb) const
Aim: This class represents a standard digital straight segment (DSS), ie. the sequence of simply 8-co...
Aim: Represents a digital straight line with slope in the first quadrant (Q0: x >= 0,...
Definition: StandardDSLQ0.h:80
MyPointD Point
Definition: testClone2.cpp:383

References DGtal::Trace::beginBlock(), DGtal::Trace::endBlock(), DGtal::IntegerComputer< TInteger >::floorDiv(), DGtal::IntegerComputer< TInteger >::gcd(), DGtal::Trace::info(), and DGtal::trace.