DGtal  1.1.0
Functions
polynomial-derivative.cpp File Reference
#include <iostream>
#include <string>
#include <sstream>
#include "DGtal/math/MPolynomial.h"
#include "DGtal/io/readers/MPolynomialReader.h"
Include dependency graph for polynomial-derivative.cpp:

Go to the source code of this file.

Functions

void usage (int, char **argv)
 
int main (int argc, char **argv)
 

Detailed Description

Author
Jacques-Olivier Lachaud (jacqu.nosp@m.es-o.nosp@m.livie.nosp@m.r.la.nosp@m.chaud.nosp@m.@uni.nosp@m.v-sav.nosp@m.oie..nosp@m.fr ) Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
Date
2012/02/06

An example file named polynomial-derivative.

This file is part of the DGtal library.

Definition in file polynomial-derivative.cpp.

Function Documentation

◆ main()

int main ( int  argc,
char **  argv 
)

Main.

[polynomial-derivative-types]

[polynomial-derivative-types]

[polynomial-derivative-process]

[polynomial-derivative-process]

Definition at line 57 of file polynomial-derivative.cpp.

58 {
59  if ( argc < 2 )
60  {
61  usage( argc, argv );
62  return 1;
63  }
64 
66  typedef double Ring;
67  typedef MPolynomial<1, Ring> MyPolynomial;
69 
71  std::string polynomialString( argv[ 1 ] );
72  std::istringstream polynomialIStream( polynomialString );
73  MyPolynomial P;
74  polynomialIStream >> P;
75  MyPolynomial P1 = derivative<0>( P );
76  MyPolynomial P2 = derivative<0>( P1 );
77  std::cout << "P(X_0) = " << P << std::endl;
78  std::cout << "P'(X_0) = " << P1 << std::endl;
79  std::cout << "P''(X_0) = " << P2 << std::endl;
81  return 0;
82 }

References usage().

◆ usage()

void usage ( int  ,
char **  argv 
)

Definition at line 48 of file polynomial-derivative.cpp.

49 {
50  std::cerr << "Usage: " << argv[ 0 ] << " <P>" << std::endl;
51  std::cerr << "\t - computes the first and second derivative of the given polynomial P (in one variable)." << std::endl;
52 }

Referenced by main().

usage
void usage(int, char **argv)
Definition: polynomial-derivative.cpp:48
DGtal::MPolynomial
Aim: Represents a multivariate polynomial, i.e. an element of , where K is some ring or field.
Definition: MPolynomial.h:955