DGtal 1.4.2
Loading...
Searching...
No Matches
MPolynomial.h
1
17#pragma once
18
36#if defined(MPolynomial_RECURSES)
37#error Recursive header files inclusion detected in MPolynomial.h
38#else // defined(MPolynomial_RECURSES)
40#define MPolynomial_RECURSES
41
42#if !defined MPolynomial_h
44#define MPolynomial_h
45
46
47//David Coeurjolly: too many deprecation warnings
48//There are pragma pop at the end of this file.
49#pragma GCC diagnostic push
50#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
51#pragma clang diagnostic push
52#pragma clang diagnostic ignored "-Wdeprecated-declarations"
53
54
55
57// Inclusions
58#include <iostream>
59#include <vector>
60#include "DGtal/base/Common.h"
62
63namespace DGtal
64{
65
66 template < int n, typename TRing,
67 typename TAlloc = std::allocator<TRing> >
68 class MPolynomial;
69 template < int N, int n, typename TRing,
70 typename TAlloc = std::allocator<TRing> >
71 class MPolynomialDerivativeComputer;
72 template < int n, typename TRing,
73 typename TAlloc = std::allocator<TRing>,
74 typename TX = TRing >
75 class MPolynomialEvaluator;
76
77 template < int n, typename TRing, typename TOwner,
78 typename TAlloc, typename TX >
79 class MPolynomialEvaluatorImpl;
80
84 template < typename TRing, typename TAlloc >
89
98 template < typename TRing, typename TOwner,
99 typename TAlloc, typename TX >
100 class MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >
101 {
102 public:
103 typedef TRing Ring;
104 typedef TOwner Owner;
105 typedef TAlloc Alloc;
106 typedef TX X;
107
108 template <int nn, class TT, class AA, class SS>
110
111 template <int nn, class TT, class HLHL, class AA, class SS>
113
114private:
115 const Owner & myOwner;
116 const X & myEvalPoint;
117
118 inline MPolynomialEvaluatorImpl( const Owner & owner, const X & evalpoint)
119 : myOwner(owner), myEvalPoint(evalpoint)
120 {}
121
126 {
128
129 public:
130 inline
135
141 inline
143 {
144 X res = (X) 0;
145 X xx = (X) 1;
146 for ( int i = 0; i < (int) p.myValue.size(); ++i )
147 {
148 res += (X)(Ring) p.myValue[i] * xx;
149 xx = xx * myOwner.myEvalPoint;
150 }
151 return res;
152 }
153 };
154
155public:
159 inline operator X() const
160 {
161 X res = (X) 0;
162 myOwner.evaluate( res, EvalFun( *this ) );
163 return res;
164 }
165
169 inline X operator() () const
170 {
171 return (X)(*this);
172 }
173
174 };
175
190 template < int n, typename TRing, typename TOwner,
191 typename TAlloc, typename TX >
193 {
194 public:
195 typedef TRing Ring;
196 typedef TOwner Owner;
197 typedef TAlloc Alloc;
198 typedef TX X;
201
208 typedef MPolynomial< n - 1, X,
209 typename Alloc::template rebind<X>::other > MPolyNM1;
210
211 template<int nn, class TT, class AA, class SS>
213
214 template<int nn, class TT, class HLHL, class AA, class SS>
216
217 private:
218 const Owner & myOwner; // The "owner"
219 const X & myEvalPoint; // The evaluation point on this level
220
221 inline
222 MPolynomialEvaluatorImpl(const Owner & owner, const X & evalpoint)
223 : myOwner(owner), myEvalPoint(evalpoint)
224 {}
225
231 template < typename XX, typename Fun >
233 {
235 const Fun & myEvalFun;
236
237 public:
238 inline
240 const Fun & evalfun)
241 : myOwner(owner), myEvalFun(evalfun)
242 {}
243
250 inline XX operator() ( const MPolynomial<n, Ring, Alloc> & p ) const
251 {
252 XX res = (XX) 0;
253 X xx = (X) 1;
254 for ( int i = 0; i < (int) p.myValue.size(); ++i )
255 {
256 res += myEvalFun(p.myValue[i]) * (XX) xx;
257 xx = xx * myOwner.myEvalPoint;
258 }
259 return res;
260 }
261 };
262
269 template < typename XX, typename Fun >
270 inline
271 void evaluate( XX & res, const Fun & evalfun ) const
272 {
273 // We have to pass evaluation on to our owner, but give a new
274 // functor which now evaluates polynomials of type poly<n, T>.
275 myOwner.evaluate( res, EvalFun< XX, Fun >( *this, evalfun ) );
276 }
277
285 {
287
288 public:
289 inline
294
301 inline MPolyNM1 operator() (const MPolyN & p) const
302 {
303 MPolyNM1 res;
304 X xx = (X) 1;
305 for ( int i = 0; i < (int) p.myValue.size(); ++i )
306 {
307 res += ( (MPolyNM1) p.myValue[i] ) * xx;
308 xx = xx * myOwner.myEvalPoint;
309 }
310 return res;
311 }
312 };
313
314 public:
318 inline
319 operator MPolyNM1() const
320 // operator poly<n - 1, S, typename Alloc::template rebind<S>::other>() const
321 {
322 MPolyNM1 res; // missing: determine allocator object
323 // We need to pass evaluation on to our owner
324 myOwner.evaluate( res, EvalFun2( *this ) );
325 return res;
326 }
327
333 template < typename XX >
334 inline
336 < n - 1, Ring,
338 Alloc, XX > operator() ( const XX & x ) const
339 {
342 Alloc, XX >( *this, x );
343 }
344 };
345
354 template < typename TRing, typename TAlloc, typename TX >
355 class MPolynomialEvaluator< 1, TRing, TAlloc, TX>
356 {
357 friend class MPolynomial< 1, TRing, TAlloc >;
358 public:
359 typedef TRing Ring;
360 typedef TAlloc Alloc;
361 typedef TX X;
363
364 private:
365 const MPoly1 & myPoly;
366 const X & myEvalPoint;
367
368 inline
369 MPolynomialEvaluator( const MPoly1 & poly, const X & evalpoint)
370 : myPoly( poly ), myEvalPoint( evalpoint )
371 {}
372
373 public:
377 inline
378 operator X() const
379 {
380 X res = (X) 0;
381 X xx = (X) 1;
382 for ( int i = 0; i < (int) myPoly.myValue.size(); ++i )
383 {
384 res += ( (X) (Ring) myPoly.myValue[i] ) * xx;
385 xx = xx * myEvalPoint;
386 }
387 return res;
388 }
389
393 inline
395 {
396 return (X) (*this);
397 }
398 };
399
400
409 template < int n, typename TRing, typename TAlloc, typename TX >
411 {
412 friend class MPolynomial< n, TRing, TAlloc>;
413
414 template<int nn, class TT, class HLHL, class AA, class SS>
416
417 public:
418 typedef TRing Ring;
419 typedef TAlloc Alloc;
420 typedef TX X;
422 typedef MPolynomial< n - 1, X,
423 typename Alloc::template rebind<X>::other > MPolyNM1;
424 private:
425 const MPolyN & myPoly;
426 const X & myEvalPoint;
427
428 inline
429 MPolynomialEvaluator( const MPolyN & poly, const X & evalpoint)
430 : myPoly( poly ), myEvalPoint( evalpoint )
431 {}
432
439 template < typename XX, typename Fun >
440 inline
441 void evaluate( XX & res, const Fun & evalfun ) const
442 {
443 X xx = (X) 1;
444 for ( int i = 0; i < (int) myPoly.myValue.size(); ++i )
445 {
446 res += evalfun( myPoly.myValue[i] ) * xx;
447 xx = xx * myEvalPoint;
448 }
449 }
450
451public:
455 inline
456 operator MPolyNM1() const
457 {
459 X xx = (X) 1;
460 for ( int i = 0; i < (int) myPoly.myValue.size(); ++i )
461 {
462 res += MPolyNM1( myPoly.myValue[i] ) * xx;
463 xx = xx * myEvalPoint;
464 }
465 return res;
466 }
467
471 template <typename XX>
472 inline
475 operator() (const XX & x) const
476 {
479 ( *this, x );
480 }
481 };
482
504 template < typename TRing, typename TAlloc >
505 class MPolynomial< 0, TRing, TAlloc >
506 {
507 public:
508 typedef TRing Ring;
509 typedef TAlloc Alloc;
510
511 private:
514
515 public:
523 inline
524 MPolynomial( const Ring & v = 0, const Alloc & allocator = Alloc() )
525 : myAllocator(allocator), myValue(v)
526 {}
527
534 inline
535 MPolynomial( const Alloc & allocator )
536 : myAllocator(allocator), myValue( Ring() )
537 {}
538
542 inline bool isZero() const
543 {
544 return myValue == 0;
545 }
546
551 inline operator const Ring & () const
552 {
553 return myValue;
554 }
555
561 inline MPolynomial & operator = (const Ring & v)
562 {
563 myValue = v;
564 return *this;
565 }
566
571 inline Ring operator() () const
572 {
573 return myValue;
574 }
575
581 inline MPolynomial operator * (const Ring & v) const
582 {
583 return MPolynomial(myValue * v);
584 }
585
591 inline MPolynomial operator / (const Ring & v) const
592 {
593 return MPolynomial(myValue / v);
594 }
595
601 inline MPolynomial operator + (const Ring & v) const
602 {
603 return MPolynomial(myValue + v);
604 }
605
611 inline MPolynomial operator - (const Ring & v) const
612 {
613 return MPolynomial(myValue - v);
614 }
615
621 {
622 return MPolynomial(-myValue);
623 }
624
630 inline MPolynomial & operator *= (const Ring & v)
631 {
632 myValue *= v;
633 return *this;
634 }
635
641 inline MPolynomial & operator /= (const Ring & v)
642 {
643 myValue /= v;
644 return *this;
645 }
646
652 inline MPolynomial & operator += (const Ring & v)
653 {
654 myValue += v;
655 return *this;
656 }
657
663 inline MPolynomial & operator -= (const Ring & v)
664 {
665 myValue -= v;
666 return *this;
667 }
668
674 inline bool operator == (const Ring & v) const
675 {
676 return myValue == v;
677 }
678
684 inline bool operator != (const Ring & v) const
685 {
686 return myValue != v;
687 }
688
693 void selfDisplay( std::ostream & s, int /*N = 0*/ ) const
694 {
695 s << myValue;
696 }
697
702 inline void swap( MPolynomial & p )
703 {
704 std::swap(myValue, p.myValue);
705 }
706
711 {
712 return myAllocator;
713 }
714 };
715
716
729 template < typename T, typename TAlloc = std::allocator<T>,
730 bool usePointers = false>
732 {
733 public:
734 typedef TAlloc Alloc;
735 typedef typename std::vector<T, Alloc>::size_type Size;
736 private:
737 std::vector<T, Alloc> myVec;
738
739 public:
740 IVector( const Alloc & allocator = Alloc() )
741 : myVec(allocator)
742 {}
743
744 IVector( Size aSize, const Alloc & allocator = Alloc() )
745 : myVec( aSize, T(), allocator )
746 {}
747
748 IVector( Size aSize, const T & entry, const Alloc & allocator = Alloc() )
749 : myVec(aSize, entry, allocator)
750 {}
751
752 Size size() const
753 {
754 return myVec.size();
755 }
756
757 void resize( Size aSize, const T & entry = T() )
758 {
759 myVec.resize(aSize, entry);
760 }
761
762 const T & operator[] ( Size i ) const
763 {
764 return myVec[i];
765 }
766
768 {
769 return myVec[i];
770 }
771
772 const T & back() const
773 {
774 return myVec.back();
775 }
776
777 T & back()
778 {
779 return myVec.back();
780 }
781
782 void swap(IVector & v)
783 {
784 myVec.swap( v.myVec );
785 }
786
788 {
789 return myVec.get_allocator();
790 }
791
793 {
794 return myVec.get_allocator();
795 }
796 };
797
802 template < typename T, typename TAlloc>
803 class IVector< T, TAlloc, true >
804 {
805 public:
806 typedef TAlloc Alloc;
807 typedef typename std::vector<typename Alloc::pointer, typename Alloc::template rebind<typename Alloc::pointer>::other>::size_type Size;
808
809 private:
811 std::vector<typename Alloc::pointer, typename Alloc::template rebind<typename Alloc::pointer>::other> myVec;
812
813 void create( Size begin, Size end, typename Alloc::const_reference entry)
814 {
815 for (Size i = begin; i < end; ++i)
816 {
817 myVec[i] = myAllocator.allocate(sizeof(T));
818 myAllocator.construct(myVec[i], entry);
819 }
820 }
821
822 void free(Size begin, Size end)
823 {
824 for (Size i = begin; i < end; ++i)
825 {
826 myAllocator.destroy(myVec[i]);
827 myAllocator.deallocate(myVec[i], sizeof(T));
828 }
829 }
830
831 template<class A>
832 void copy_from(const std::vector<typename Alloc::pointer, A> & source)
833 {
834 for (Size i = 0; i < myVec.size(); ++i)
835 {
836 myVec[i] = myAllocator.allocate(sizeof(T));
837 myAllocator.construct(myVec[i], *source[i]);
838 }
839 }
840
841 public:
842 IVector(const Alloc & allocator = Alloc())
843 : myAllocator(allocator), myVec(allocator)
844 {}
845
846 IVector(Size aSize, const Alloc & allocator = Alloc())
847 : myAllocator(allocator), myVec(aSize, 0, allocator)
848 {
849 create(0, aSize, T());
850 }
851
852 IVector(Size aSize, const T & entry, const Alloc & allocator = Alloc())
853 : myAllocator(allocator), myVec(aSize, 0, allocator)
854 {
855 create(0, aSize, entry);
856 }
857
858 IVector(const IVector & v)
859 : myVec(v.size())
860 {
861 copy_from(v.myVec);
862 }
863
865 {
866 free(0, (Size)myVec.size());
867 }
868
869 IVector & operator = (const IVector & v)
870 {
871 if (&v != this)
872 {
873 free(0, (Size)myVec.size());
874 myVec.resize(v.size());
875 copy_from(v.myVec);
876 }
877 return *this;
878 }
879
880 Size size() const
881 {
882 return (Size)myVec.size();
883 }
884
885 void resize(Size aSize, const T & entry = T())
886 {
887 Size oldsize = (Size)myVec.size();
888 if (oldsize > aSize)
889 free(aSize, oldsize);
890 myVec.resize(aSize);
891 if (oldsize < aSize)
892 create(oldsize, aSize, entry);
893 }
894
895 const T & operator[] (Size i) const
896 {
897 return *myVec[i];
898 }
899
901 {
902 return *myVec[i];
903 }
904
905 const T & back() const
906 {
907 return *myVec.back();
908 }
909
910 T & back()
911 {
912 return *myVec.back();
913 }
914
915 void swap(IVector & v)
916 {
917 myVec.swap(v.myVec);
918 }
919
921 {
922 return myVec.get_allocator();
923 }
924
926 {
927 return myVec.get_allocator();
928 }
929 };
930
931
933 // template class MPolynomial
963 template < int n, typename TRing, class TAlloc >
965 {
966 // ----------------------- friends ---------------------------------------
967
968 template<int NN, int nn, typename TT, typename AA>
970
976
977 template<int nn, typename TT, typename AA, typename SS>
979
980 template<int nn, typename TT, typename HLHL, typename AA, typename SS>
982
983 public:
984 typedef TRing Ring;
985 typedef TAlloc Alloc;
986 typedef MPolynomial< n - 1, Ring, Alloc > MPolyNM1;
993 typedef IVector< MPolyNM1,
994 typename Alloc::template rebind<MPolyNM1 >::other, (n>1) >
996 typedef typename Storage::Size Size;
997
998 // ----------------------- Datas ----------------------------
999private:
1009
1013 inline
1014 MPolynomial( bool, Size s, const Alloc & /*allocator*/)
1015 : myValue(s)
1016 {}
1017
1018public:
1025 inline void normalize()
1026 {
1027 Size dp1 = myValue.size();
1028 while ( dp1 )
1029 {
1030 if (myValue[dp1 - 1].isZero())
1031 --dp1;
1032 else
1033 break;
1034 }
1035 if (dp1 < myValue.size())
1036 myValue.resize(dp1);
1037 }
1038
1039 // ----------------------- Standard services ----------------------------
1040 public:
1041
1045 inline MPolynomial( const Alloc & allocator = Alloc() )
1046 : myValue( allocator )
1047 {}
1048
1052 inline MPolynomial( const Ring & v, const Alloc & allocator = Alloc() )
1053 : myValue( 1, MPolyNM1( v ), allocator )
1054 {}
1055
1060 inline MPolynomial( const MPolyNM1 & pdm1,
1061 const Alloc & /*allocator = Alloc()*/ )
1062 : myValue( 1, pdm1 )
1063 {}
1064
1069 template < typename Ring2, typename Alloc2 >
1071 const Alloc & allocator = Alloc() )
1072 : myValue( p.degree() + 1, MPolyNM1(), allocator )
1073 {
1074 for ( Size i = 0; i < myValue.size(); ++i )
1075 myValue[i] = p[i];
1076 normalize();
1077 }
1078
1083 template < typename Ring2, typename Alloc2 >
1084 inline
1085 MPolynomial & operator=
1087 {
1088 myValue.resize(p.degree() + 1);
1089 for ( Size i = 0; i < myValue.size(); ++i )
1090 myValue[i] = p[i];
1091 normalize();
1092 return *this;
1093 }
1094
1099 inline void swap( MPolynomial & p )
1100 {
1101 myValue.swap(p.myValue);
1102 }
1103
1108 {
1109 return myValue.getAllocator();
1110 }
1111
1112 // ----------------------- MPolynomial services ----------------------------
1113 public:
1114
1119 inline int degree() const
1120 {
1121 return (int)(myValue.size() - 1);
1122 }
1123
1129 inline const MPolyNM1 & leading() const
1130 {
1131 return myValue.size() ? myValue.back() : myZeroPolynomial;
1132 }
1133
1137 inline bool isZero() const
1138 {
1139 return myValue.size() == 0;
1140 }
1141
1148 {
1149 if (i >= myValue.size())
1150 myValue.resize(i + 1);
1151 return myValue[i];
1152 }
1153
1157 inline const MPolyNM1 & operator[] (Size i) const
1158 {
1159 return i < myValue.size() ? myValue[i] : myZeroPolynomial;
1160 }
1161
1168 inline
1173
1181 template <typename Ring2>
1182 inline
1187
1188 // ----------------------- Operators --------------------------------------
1189 public:
1190
1196 inline MPolynomial operator * (const Ring & v) const
1197 {
1198 MPolynomial r(*this);
1199 for ( Size i = 0; i < myValue.size(); ++i )
1200 r[i] *= v;
1201 return r;
1202 }
1203
1209 inline MPolynomial operator / (const Ring & v) const
1210 {
1211 MPolynomial r(*this);
1212 for ( Size i = 0; i < myValue.size(); ++i )
1213 r[i] /= v;
1214 return r;
1215 }
1216
1223 {
1224 return *this = *this * p;
1225 }
1226
1232 inline MPolynomial & operator *= (const Ring & v)
1233 {
1234 MPolynomial r( *this );
1235 for ( Size i = 0; i < myValue.size(); ++i )
1236 myValue[i] *= v;
1237 return *this;
1238 }
1239
1245 inline MPolynomial & operator /= (const Ring & v)
1246 {
1247 for ( Size i = 0; i < myValue.size(); ++i )
1248 myValue[i] /= v;
1249 return *this;
1250 }
1251
1258 friend
1259 inline MPolynomial operator * (const Ring & v, const MPolynomial & p)
1260 {
1261 MPolynomial r(p);
1262 for ( Size i = 0; i < p.myValue.size(); ++i )
1263 r[i] *= v;
1264 return r;
1265 }
1266
1271 {
1272 MPolynomial r( true, myValue.size(), getAllocator() );
1273 for ( Size i = 0; i < myValue.size(); ++i )
1274 r[i] = -myValue[i];
1275 return r;
1276 }
1277
1283 inline MPolynomial operator + (const MPolynomial & q) const
1284 {
1285 MPolynomial r(*this);
1286 if (r.myValue.size() < q.myValue.size())
1287 r.myValue.resize(q.myValue.size());
1288 for ( Size i = 0; i < q.myValue.size(); ++i )
1289 r[i] += q[i];
1290 r.normalize();
1291 return r;
1292 }
1293
1299 inline MPolynomial operator - (const MPolynomial & q) const
1300 {
1301 MPolynomial r(*this);
1302 if (r.myValue.size() < q.myValue.size())
1303 r.myValue.resize(q.myValue.size());
1304 for ( Size i = 0; i < q.myValue.size(); ++i )
1305 r[i] -= q[i];
1306 r.normalize();
1307 return r;
1308 }
1309
1316 {
1317 if (myValue.size() < q.myValue.size())
1318 myValue.resize(q.myValue.size());
1319 for ( Size i = 0; i < q.myValue.size(); ++i )
1320 myValue[i] += q[i];
1321 normalize();
1322 return *this;
1323 }
1324
1331 {
1332 if (myValue.size() < q.myValue.size())
1333 myValue.resize(q.myValue.size());
1334 for ( Size i = 0; i < q.myValue.size(); ++i )
1335 myValue[i] -= q[i];
1336 normalize();
1337 return *this;
1338 }
1339
1346 inline MPolynomial operator + (const MPolyNM1 & q) const
1347 {
1348 MPolynomial r(*this);
1349 if (r.myValue.size() < 1)
1350 r.myValue.resize(1);
1351 r[0] += q;
1352 r.normalize();
1353 return r;
1354 }
1355
1362 inline MPolynomial operator - (const MPolyNM1 & q) const
1363 {
1364 MPolynomial r(*this);
1365 if (r.myValue.size() < 1)
1366 r.myValue.resize(1);
1367 r[0] -= q;
1368 r.normalize();
1369 return r;
1370 }
1371
1377 inline MPolynomial operator + (const Ring & v) const
1378 {
1379 MPolynomial r(*this);
1380 if (r.myValue.size() < 1)
1381 r.myValue.resize(1);
1382 r[0] += v;
1383 r.normalize();
1384 return r;
1385 }
1386
1392 inline MPolynomial operator - (const Ring & v) const
1393 {
1394 MPolynomial r(*this);
1395 if (r.myValue.size() < 1)
1396 r.myValue.resize(1);
1397 r[0] -= v;
1398 r.normalize();
1399 return r;
1400 }
1401
1409 {
1410 if (myValue.size() < 1)
1411 myValue.resize(1);
1412 myValue[0] += q;
1413 normalize();
1414 return *this;
1415 }
1416
1424 {
1425 if (myValue.size() < 1)
1426 myValue.resize(1);
1427 myValue[0] -= q;
1428 normalize();
1429 return *this;
1430 }
1431
1437 inline MPolynomial & operator += (const Ring & v)
1438 {
1439 if (myValue.size() < 1)
1440 myValue.resize(1);
1441 myValue[0] += v;
1442 normalize();
1443 return *this;
1444 }
1445
1451 inline MPolynomial & operator -= (const Ring & v)
1452 {
1453 if (myValue.size() < 1)
1454 myValue.resize(1);
1455 myValue[0] -= v;
1456 normalize();
1457 return *this;
1458 }
1459
1467 inline MPolynomial operator * (const MPolynomial & p) const
1468 {
1469 int d = p.degree() + degree();
1470 if (d < -1)
1471 d = -1;
1472 MPolynomial r( true, d + 1, getAllocator() );
1473 if (!isZero() && !p.isZero())
1474 for ( Size i = 0; i < r.myValue.size(); ++i )
1475 for ( Size j = 0; j < myValue.size(); ++j )
1476 if (i < j + p.myValue.size())
1477 r[i] += myValue[j] * p[i - j];
1478 r.normalize();
1479 return r;
1480 }
1481
1482 // ----------------------- Comparison operators ---------------------------
1483 public:
1484
1490 inline bool operator == (const MPolynomial & q) const
1491 {
1492 if (myValue.size() != q.myValue.size())
1493 return false;
1494 for (Size i = 0; i < myValue.size(); ++i)
1495 if (myValue[i] != q[i])
1496 return false;
1497 return true;
1498 }
1499
1505 inline bool operator != (const MPolynomial & q) const
1506 {
1507 return !(*this == q);
1508 }
1509
1515 inline bool operator == (const Ring & v) const
1516 {
1517 if ((v == 0) && (myValue.size() == 0))
1518 return true;
1519 if (myValue.size() != 1)
1520 return false;
1521 return myValue[0] == v;
1522 }
1523
1529 inline bool operator != (const Ring & v) const
1530 {
1531 return !(*this == v);
1532 }
1533
1534
1535
1536 // ----------------------- Interface --------------------------------------
1537 public:
1538
1546 void selfDisplay ( std::ostream & s, int N = n ) const
1547 {
1548 if (isZero())
1549 s << (Ring) 0;
1550 else
1551 {
1552 Size nonzero = 0;
1553 for (Size i = 0; i < myValue.size(); ++i)
1554 if (!myValue[i].isZero())
1555 ++nonzero;
1556 if (nonzero > 1) s << "(";
1557 bool first = true;
1558 for (Size i = 0; i < myValue.size(); ++i)
1559 if (!myValue[i].isZero())
1560 {
1561 if (first) first = false;
1562 else s << " + ";
1563 myValue[i].selfDisplay(s, N);
1564 if (i > 0)
1565 {
1566 s << " ";
1567 s << "X_" << N - n;
1568 if (i > 1) s << "^" << i;
1569 }
1570 }
1571 if (nonzero > 1)
1572 s << ")";
1573 }
1574 }
1575
1580 bool isValid() const;
1581
1582
1583 // ------------------------- Datas --------------------------------------
1584 private:
1585 // ------------------------- Hidden services ----------------------------
1586 protected:
1587
1588
1589 }; // end of class MPolynomial
1590
1591
1598 template <int N, typename TRing, class TAlloc>
1599 std::ostream&
1600 operator<< ( std::ostream & out,
1601 const MPolynomial<N, TRing, TAlloc> & object );
1602
1603
1604 // ------------------------- monomial services ----------------------------
1605
1612 template <int n, typename Ring, typename Alloc>
1614 {
1615 public:
1617
1624 get( unsigned int k, unsigned int e )
1625 {
1627 if ( k == 0 )
1628 p[e] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1629 else
1630 p[0] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1631 p.normalize();
1632 //std::cerr << "Xe_k(" << k << "," << e << ")=" << p << std::endl;
1633 return p;
1634 }
1635
1636 };
1637
1638 template <typename Ring, typename Alloc>
1639 class Xe_kComputer<0,Ring,Alloc>
1640 {
1641 public:
1643
1645 get( unsigned int /*k*/, unsigned int /*e*/ )
1646 {
1648 return p;
1649 }
1650 };
1651
1661 template <int n, typename Ring, typename Alloc>
1662 inline
1663 MPolynomial<n, Ring, Alloc>
1664 Xe_k( unsigned int k, unsigned int e )
1665 {
1666 return Xe_kComputer<n, Ring, Alloc>().get( k, e );
1667 }
1668
1677 template <int n, typename Ring>
1678 inline
1679 MPolynomial<n, Ring, std::allocator<Ring> >
1680 Xe_k( unsigned int k, unsigned int e )
1681 {
1682 return Xe_kComputer<n, Ring, std::allocator<Ring> >().get( k, e );
1683 }
1684
1685
1693 template <typename Ring, typename Alloc>
1694 inline
1695 MPolynomial<1, Ring, Alloc>
1696 mmonomial(unsigned int e)
1697 {
1699 p[e] = 1;
1700 return p;
1701 }
1702
1711 template <typename Ring, typename Alloc>
1712 inline
1713 MPolynomial<2, Ring, Alloc>
1714 mmonomial(unsigned int e, unsigned int f)
1715 {
1717 p[e][f] = 1;
1718 return p;
1719 }
1720
1730 template <typename Ring, typename Alloc>
1731 inline MPolynomial<3, Ring, Alloc>
1732 mmonomial(unsigned int e, unsigned int f, unsigned int g)
1733 {
1735 p[e][f][g] = 1;
1736 return p;
1737 }
1738
1749 template <typename Ring, typename Alloc>
1750 inline
1751 MPolynomial<4, Ring, Alloc>
1752 mmonomial(unsigned int e, unsigned int f, unsigned int g, unsigned int h)
1753 {
1755 p[e][f][g][h] = 1;
1756 return p;
1757 }
1758
1765 template <typename Ring>
1766 inline
1767 MPolynomial<1, Ring, std::allocator<Ring> >
1768 mmonomial(unsigned int e)
1769 {
1771 p[e] = 1;
1772 return p;
1773 }
1774
1782 template <typename Ring>
1783 inline
1784 MPolynomial<2, Ring, std::allocator<Ring> >
1785 mmonomial(unsigned int e, unsigned int f)
1786 {
1788 p[e][f] = 1;
1789 return p;
1790 }
1791
1800 template <typename Ring>
1801 inline
1802 MPolynomial<3, Ring, std::allocator<Ring> >
1803 mmonomial(unsigned int e, unsigned int f, unsigned int g)
1804 {
1806 p[e][f][g] = 1;
1807 return p;
1808 }
1809
1819 template <typename Ring>
1820 inline
1821 MPolynomial<4, Ring, std::allocator<Ring> >
1823 (unsigned int e, unsigned int f, unsigned int g, unsigned int h)
1824 {
1826 p[e][f][g][h] = 1;
1827 return p;
1828 }
1829
1830
1851 template <int n, typename Ring, class Alloc>
1852 class MPolynomialDerivativeComputer<0, n, Ring, Alloc>
1853 {
1854 public:
1857
1865 static inline
1866 void computeDerivative( const MPolyN & src, MPolyN & dest)
1867 {
1868 dest.myValue.resize(src.degree() >= 0 ? src.degree() : 0);
1869 for ( int i = 1; i <= src.degree(); ++i )
1870 dest[i - 1] = src[i] * (Ring)i;
1871 dest.normalize();
1872 }
1873 };
1874
1896 template <int N, int n, typename Ring, typename Alloc>
1898 {
1899 public:
1902
1910 static inline
1911 void computeDerivative(const MPolyN & src, MPolyN & dest)
1912 {
1913 dest.myValue.resize(src.degree() + 1);
1914 for ( int i = 0; i <= src.degree(); ++i )
1916 ::computeDerivative( src[i], dest[i] );
1917 dest.normalize();
1918 }
1919 };
1920
1924 template<typename Ring, class Alloc>
1925 class MPolynomialDerivativeComputer<0, 0, Ring, Alloc>
1926 {
1927 public:
1928 class ERROR_N_must_be_strictly_less_than_n_in_derivative_template;
1930
1931 static inline
1933 {
1934 ERROR_N_must_be_strictly_less_than_n_in_derivative_template();
1935 }
1936 };
1937
1941 template<int N, typename Ring, class Alloc>
1942 class MPolynomialDerivativeComputer<N, 0, Ring, Alloc>
1943 {
1944 public:
1945 class ERROR_N_must_be_strictly_less_than_n_in_derivative_template;
1947
1948 static inline
1950 {
1951 ERROR_N_must_be_strictly_less_than_n_in_derivative_template();
1952 }
1953 };
1954
1973 template <int N, int n, typename Ring, typename Alloc>
1974 inline
1975 MPolynomial<n, Ring, Alloc>
1977 {
1978 MPolynomial<n, Ring, Alloc> res( p.getAllocator() );
1980 return res;
1981 }
1982
1996 template<int N, int n, typename Ring>
1997 inline
1998 MPolynomial<n, Ring, std::allocator<Ring> >
2000 (const MPolynomial<n,Ring,std::allocator<Ring> > & p)
2001 {
2002 MPolynomial<n, Ring, std::allocator<Ring> > res( p.getAllocator() );
2004 ::computeDerivative( p, res );
2005 return res;
2006 }
2007
2011 template<typename Ring, typename Alloc>
2012 void
2017 {
2018 if (f.degree() < g.degree())
2019 {
2020 // Ignore the trivial case
2021 q = MPolynomial<1, Ring, Alloc>(f.getAllocator());
2022 r = f;
2023 return;
2024 }
2025 q = MPolynomial<1, Ring, Alloc>( true, f.degree() - g.degree() + 1,
2026 f.getAllocator() );
2027 r = f;
2028 for (int i = q.degree(); i >= 0; --i)
2029 {
2030 q[i] = r[i + g.degree()] / g.leading();
2031 for (int j = g.degree(); j >= 0; --j)
2032 r[i + j] -= q[i] * g[j];
2033 }
2034 r.normalize();
2035 // Note that the degree of q is already correct.
2036 }
2037
2041 template <typename Ring>
2042 void
2043 euclidDiv( const MPolynomial<1, Ring, std::allocator<Ring> > & f,
2044 const MPolynomial<1, Ring, std::allocator<Ring> > & g,
2045 MPolynomial<1, Ring, std::allocator<Ring> > & q,
2046 MPolynomial<1, Ring, std::allocator<Ring> > & r )
2047 {
2049 }
2050
2055 template<typename Ring, typename Alloc>
2056 MPolynomial<1, Ring, Alloc>
2058 const MPolynomial<1, Ring, Alloc> & g )
2059 {
2060 if (f.isZero())
2061 {
2062 if (g.isZero()) return f; // both are zero
2063 else return g / g.leading(); // make g monic
2064 }
2066 d1(f / f.leading()),
2067 d2(g / g.leading()),
2068 q(f.getAllocator()),
2069 r(f.getAllocator());
2070 while (!d2.isZero())
2071 {
2072 euclidDiv(d1, d2, q, r);
2073 d1.swap(d2);
2074 d2 = r;
2075 d2 /= r.leading(); // make r monic
2076 }
2077 return d1;
2078 }
2079
2084 template<typename Ring>
2085 MPolynomial<1, Ring, std::allocator<Ring> >
2086 gcd( const MPolynomial<1, Ring, std::allocator<Ring> > & f,
2087 const MPolynomial<1, Ring, std::allocator<Ring> > & g )
2088 {
2089 return gcd<Ring, std::allocator<Ring> >(f, g);
2090 }
2091
2092} // namespace DGtal
2093
2094
2096// Includes inline functions.
2097#include "DGtal/math/MPolynomial.ih"
2098
2099#pragma GCC diagnostic pop
2100#pragma clang diagnostic pop
2101
2102
2103// //
2105
2106#endif // !defined MPolynomial_h
2107
2108#undef MPolynomial_RECURSES
2109#endif // else defined(MPolynomial_RECURSES)
IVector(Size aSize, const Alloc &allocator=Alloc())
IVector(Size aSize, const T &entry, const Alloc &allocator=Alloc())
void copy_from(const std::vector< typename Alloc::pointer, A > &source)
IVector(const Alloc &allocator=Alloc())
void create(Size begin, Size end, typename Alloc::const_reference entry)
void resize(Size aSize, const T &entry=T())
std::vector< typenameAlloc::pointer, typenameAlloc::templaterebind< typenameAlloc::pointer >::other >::size_type Size
std::vector< typename Alloc::pointer, typename Alloc::template rebind< typename Alloc::pointer >::other > myVec
void free(Size begin, Size end)
Size size() const
IVector(const Alloc &allocator=Alloc())
IVector(Size aSize, const Alloc &allocator=Alloc())
const T & back() const
void swap(IVector &v)
Alloc get_allocator() const
std::vector< T, Alloc > myVec
const T & operator[](Size i) const
IVector(Size aSize, const T &entry, const Alloc &allocator=Alloc())
Alloc getAllocator() const
void resize(Size aSize, const T &entry=T())
std::vector< T, Alloc >::size_type Size
static void computeDerivative(const MPoly0 &, MPoly0 &)
static void computeDerivative(const MPolyN &src, MPolyN &dest)
MPolynomial< n, Ring, Alloc > MPolyN
Type for polynomial with n variable in the ring Ring.
static void computeDerivative(const MPoly0 &, MPoly0 &)
MPolynomial< n, Ring, Alloc > MPolyN
Type for polynomial with n variable in the ring Ring.
static void computeDerivative(const MPolyN &src, MPolyN &dest)
const MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X > & myOwner
MPolyNM1 operator()(const MPolyN &p) const
EvalFun2(const MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X > &owner)
const MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X > & myOwner
XX operator()(const MPolynomial< n, Ring, Alloc > &p) const
EvalFun(const MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X > &owner, const Fun &evalfun)
const MPolynomialEvaluatorImpl< 1, Ring, Owner, Alloc, X > & myOwner
EvalFun(const MPolynomialEvaluatorImpl< 1, Ring, Owner, Alloc, X > &owner)
MPolynomialEvaluatorImpl(const Owner &owner, const X &evalpoint)
const X & myEvalPoint
The evaluation point on this level.
void evaluate(XX &res, const Fun &evalfun) const
MPolynomial< n, Ring, Alloc > MPolyN
Type for the multivariate polynomial.
MPolynomialEvaluatorImpl< n - 1, Ring, MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X >, Alloc, XX > operator()(const XX &x) const
MPolynomial< n - 1, X, typename Alloc::template rebind< X >::other > MPolyNM1
MPolynomialEvaluatorImpl(const Owner &owner, const X &evalpoint)
const MPoly1 & myPoly
The polynomial in question.
MPolynomialEvaluator(const MPoly1 &poly, const X &evalpoint)
const X & myEvalPoint
the evaluation point
MPolynomialEvaluator(const MPolyN &poly, const X &evalpoint)
MPolynomial< n, Ring, Alloc > MPolyN
MPolynomialEvaluatorImpl< n - 1, Ring, MPolynomialEvaluator< n, Ring, Alloc, X >, Alloc, XX > operator()(const XX &x) const
void evaluate(XX &res, const Fun &evalfun) const
MPolynomial< n - 1, X, typename Alloc::template rebind< X >::other > MPolyNM1
const MPolyN & myPoly
The polynomial in question.
MPolynomial(const Alloc &allocator)
MPolynomial(const Ring &v=0, const Alloc &allocator=Alloc())
void selfDisplay(std::ostream &s, int) const
Aim: Represents a multivariate polynomial, i.e. an element of , where K is some ring or field.
MPolynomial(const Ring &v, const Alloc &allocator=Alloc())
bool operator==(const MPolynomial &q) const
static MPolyNM1 myZeroPolynomial
The zero polynomial of n-1 variables for a n-multivariate polynomial.
MPolynomialEvaluator< n, Ring, Alloc, Ring > operator()(const Ring &x) const
friend void euclidDiv(const MPolynomial< 1, TRing, TAlloc > &, const MPolynomial< 1, TRing, TAlloc > &, MPolynomial< 1, TRing, TAlloc > &, MPolynomial< 1, TRing, TAlloc > &)
void selfDisplay(std::ostream &s, int N=n) const
MPolynomial(const Alloc &allocator=Alloc())
friend MPolynomial operator*(const Ring &v, const MPolynomial &p)
MPolynomial & operator-=(const MPolynomial &q)
MPolynomial operator/(const Ring &v) const
MPolynomial & operator/=(const Ring &v)
MPolynomial operator-() const
MPolynomial & operator+=(const MPolynomial &q)
bool isValid() const
MPolynomial(const MPolyNM1 &pdm1, const Alloc &)
MPolyNM1 & operator[](Size i)
MPolynomial & operator*=(const MPolynomial &p)
Alloc getAllocator() const
bool operator!=(const MPolynomial &q) const
void swap(MPolynomial &p)
friend class MPolynomialEvaluator
Storage::Size Size
MPolynomial< n - 1, Ring, Alloc > MPolyNM1
const MPolyNM1 & leading() const
bool isZero() const
MPolynomial(bool, Size s, const Alloc &)
MPolynomial(const MPolynomial< n, Ring2, Alloc2 > &p, const Alloc &allocator=Alloc())
MPolynomial & operator=(const MPolynomial< n, Ring2, Alloc2 > &p)
MPolynomial operator+(const MPolynomial &q) const
MPolynomial< 0, Ring, Alloc > get(unsigned int, unsigned int)
MPolynomial< n, Ring, Alloc > get(unsigned int k, unsigned int e)
DGtal is the top-level namespace which contains all DGtal functions and types.
void euclidDiv(const MPolynomial< 1, TRing, TAlloc > &f, const MPolynomial< 1, TRing, TAlloc > &g, MPolynomial< 1, TRing, TAlloc > &q, MPolynomial< 1, TRing, TAlloc > &r)
MPolynomial< 1, Ring, Alloc > mmonomial(unsigned int e)
MPolynomial< n, Ring, Alloc > Xe_k(unsigned int k, unsigned int e)
std::ostream & operator<<(std::ostream &out, const ClosedIntegerHalfPlane< TSpace > &object)
MPolynomial< 1, Ring, Alloc > gcd(const MPolynomial< 1, Ring, Alloc > &f, const MPolynomial< 1, Ring, Alloc > &g)
MPolynomial< n, Ring, Alloc > derivative(const MPolynomial< n, Ring, Alloc > &p)