DGtal 1.4.0
|
#include <DGtal/math/MPolynomial.h>
Public Types | |
typedef TRing | Ring |
typedef TAlloc | Alloc |
typedef TX | X |
typedef MPolynomial< n, Ring, Alloc > | MPolyN |
typedef MPolynomial< n - 1, X, typename Alloc::template rebind< X >::other > | MPolyNM1 |
Public Member Functions | |
operator MPolyNM1 () const | |
template<typename XX > | |
MPolynomialEvaluatorImpl< n - 1, Ring, MPolynomialEvaluator< n, Ring, Alloc, X >, Alloc, XX > | operator() (const XX &x) const |
Private Member Functions | |
MPolynomialEvaluator (const MPolyN &poly, const X &evalpoint) | |
template<typename XX , typename Fun > | |
void | evaluate (XX &res, const Fun &evalfun) const |
Private Attributes | |
const MPolyN & | myPoly |
The polynomial in question. | |
const X & | myEvalPoint |
the evaluation point | |
Friends | |
class | MPolynomial< n, TRing, TAlloc > |
template<int nn, class TT , class HLHL , class AA , class SS > | |
class | MPolynomialEvaluatorImpl |
The top level polynomial evaluation class, in case n > 1, i.e. in case the coefficients are polynomials by themselves.
This class is a backport from Spielwiese.
Definition at line 410 of file MPolynomial.h.
typedef TAlloc DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::Alloc |
Definition at line 419 of file MPolynomial.h.
typedef MPolynomial< n, Ring, Alloc > DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::MPolyN |
Definition at line 421 of file MPolynomial.h.
typedef MPolynomial< n - 1, X, typename Alloc::template rebind<X>::other > DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::MPolyNM1 |
Definition at line 423 of file MPolynomial.h.
typedef TRing DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::Ring |
Definition at line 418 of file MPolynomial.h.
typedef TX DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::X |
Definition at line 420 of file MPolynomial.h.
|
inlineprivate |
Definition at line 429 of file MPolynomial.h.
|
inlineprivate |
Will be called by "child". Evaluates the polynomial into an element of XX (which must not necessarily be X, it can also be MPolynomial<k, X> for some k < n - 1) using the given functor to evaluate the coefficients, which are of type MPolynomial<n-1, Ring>.
Definition at line 441 of file MPolynomial.h.
References DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::myEvalPoint, DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::myPoly, DGtal::MPolynomial< n, TRing, TAlloc >::myValue, and DGtal::IVector< T, TAlloc, usePointers >::size().
|
inline |
Evaluate to polynomial of type MPolynomial< n-1, X>.
Definition at line 456 of file MPolynomial.h.
References DGtal::MPolynomial< n, TRing, TAlloc >::getAllocator(), DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::myEvalPoint, DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::myPoly, DGtal::MPolynomial< n, TRing, TAlloc >::myValue, and DGtal::IVector< T, TAlloc, usePointers >::size().
|
inline |
Continue evaluation to lower level.
Definition at line 475 of file MPolynomial.h.
|
friend |
Definition at line 394 of file MPolynomial.h.
|
friend |
Definition at line 415 of file MPolynomial.h.
|
private |
the evaluation point
Definition at line 426 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::evaluate(), DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::operator MPolyNM1(), and DGtal::MPolynomialEvaluator< 1, TRing, TAlloc, TX >::operator X().
|
private |
The polynomial in question.
Definition at line 425 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::evaluate(), DGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >::operator MPolyNM1(), and DGtal::MPolynomialEvaluator< 1, TRing, TAlloc, TX >::operator X().