DGtal 2.0.0
|
#include <DGtal/math/MPolynomial.h>
Public Types | |
typedef TAlloc | Alloc |
typedef std::vector< T, Alloc >::size_type | Size |
Public Member Functions | |
IVector (const Alloc &allocator=Alloc()) | |
IVector (Size aSize, const Alloc &allocator=Alloc()) | |
IVector (Size aSize, const T &entry, const Alloc &allocator=Alloc()) | |
Size | size () const |
void | resize (Size aSize, const T &entry=T()) |
const T & | operator[] (Size i) const |
T & | operator[] (Size i) |
const T & | back () const |
T & | back () |
void | swap (IVector &v) |
Alloc | get_allocator () const |
Alloc | getAllocator () const |
Private Attributes | |
std::vector< T, Alloc > | myVec |
Next, we want to define the storage class IVector<T, Alloc, usePointers>. It behaves like a subset of std::vector<T>'s capabilities (i.e. access elements, get size, set size, get last element, swap with other storage of same type), but uses std::vector<T*> in case usePointers is true.
The advantage of this approach is that if T is a more complex object, reallocation done with resize() can be very costly.
This generic version is just using std::vector<T>.
Definition at line 733 of file MPolynomial.h.
typedef TAlloc DGtal::IVector< T, TAlloc, usePointers >::Alloc |
Definition at line 736 of file MPolynomial.h.
typedef std::vector<T,Alloc>::size_type DGtal::IVector< T, TAlloc, usePointers >::Size |
Definition at line 737 of file MPolynomial.h.
|
inline |
Definition at line 742 of file MPolynomial.h.
|
inline |
|
inline |
|
inline |
Definition at line 779 of file MPolynomial.h.
|
inline |
Definition at line 774 of file MPolynomial.h.
|
inline |
Definition at line 789 of file MPolynomial.h.
|
inline |
Definition at line 794 of file MPolynomial.h.
|
inline |
Definition at line 769 of file MPolynomial.h.
|
inline |
Definition at line 764 of file MPolynomial.h.
|
inline |
Definition at line 759 of file MPolynomial.h.
Referenced by DGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >::computeDerivative(), DGtal::MPolynomialDerivativeComputer< 0, n, Ring, Alloc >::computeDerivative(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-(), and DGtal::MPolynomial< Space::dimension, Scalar >::operator-().
|
inline |
Definition at line 754 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluator< 1, TRing, TAlloc, TX >::MPolynomial< 1, TRing, TAlloc >, DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::EvalFun< XX, Fun >::operator()(), DGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::EvalFun::operator()(), DGtal::MPolynomial< Space::dimension, Scalar >::operator*(), DGtal::MPolynomial< Space::dimension, Scalar >::operator*, DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+(), DGtal::MPolynomial< Space::dimension, Scalar >::operator+=(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-(), DGtal::MPolynomial< Space::dimension, Scalar >::operator-=(), DGtal::IVector< T, TAlloc, true >::operator=(), and DGtal::MPolynomial< Space::dimension, Scalar >::operator==().
|
inline |
Definition at line 784 of file MPolynomial.h.
|
private |
Definition at line 739 of file MPolynomial.h.
Referenced by DGtal::IVector< T, TAlloc, true >::IVector(), DGtal::IVector< T, TAlloc, true >::operator=(), DGtal::IVector< MPolyNM1, typename std::allocator_traits< Alloc >::template rebind_alloc< MPolyNM1 >,(n > 1) >::swap(), and DGtal::IVector< T, TAlloc, true >::swap().