#include <DGtal/math/AngleComputer.h>
|
static float | cast (float i) |
|
static bool | less (float i, float j) |
|
static float | posDiff (float j, float i) |
|
static float | deviation (float j, float i) |
|
static float | min (float i, float j) |
|
static float | max (float i, float j) |
|
static double | cast (double i) |
|
static bool | less (double i, double j) |
|
static double | posDiff (double j, double i) |
|
static double | deviation (double j, double i) |
|
static double | min (double i, double j) |
|
static double | max (double i, double j) |
|
A simple class to perform angle computations. All angles are in [0:2pi[
Definition at line 58 of file AngleComputer.h.
◆ cast() [1/2]
static double DGtal::AngleComputer::cast |
( |
double | i | ) |
|
|
static |
- Parameters
-
- Returns
- the corresponding angle in [0:2pi[
◆ cast() [2/2]
static float DGtal::AngleComputer::cast |
( |
float | i | ) |
|
|
static |
- Parameters
-
- Returns
- the corresponding angle in [0:2pi[
◆ deviation() [1/2]
static double DGtal::AngleComputer::deviation |
( |
double | j, |
|
|
double | i ) |
|
static |
Performs j - i, assuming th result is in [-pi:pi[
- Parameters
-
j | any angle in [0:2pi[ |
i | any angle in [0:2pi[ |
- Returns
- the value j - i, always positive.
◆ deviation() [2/2]
static float DGtal::AngleComputer::deviation |
( |
float | j, |
|
|
float | i ) |
|
static |
Performs j - i, assuming th result is in [-pi:pi[
- Parameters
-
j | any angle in [0:2pi[ |
i | any angle in [0:2pi[ |
- Returns
- the value j - i, always positive.
◆ less() [1/2]
static bool DGtal::AngleComputer::less |
( |
double | i, |
|
|
double | j ) |
|
static |
Less comparator modulo. Be careful, modulo comparisons have no sense when the absolute difference of the values are around pi.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- 'true' if [i] strictly precedes [j] in a window 'pi'.
◆ less() [2/2]
static bool DGtal::AngleComputer::less |
( |
float | i, |
|
|
float | j ) |
|
static |
Less comparator modulo. Be careful, modulo comparisons have no sense when the absolute difference of the values are around pi.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- 'true' if [i] strictly precedes [j] in a window 'pi'.
◆ max() [1/2]
static double DGtal::AngleComputer::max |
( |
double | i, |
|
|
double | j ) |
|
static |
Equivalent to 'less( i, j ) ? j : i'.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- the greatest angle of [i] and [j] in a window 'pi'.
◆ max() [2/2]
static float DGtal::AngleComputer::max |
( |
float | i, |
|
|
float | j ) |
|
static |
Equivalent to 'less( i, j ) ? j : i'.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- the greatest angle of [i] and [j] in a window 'pi'.
◆ min() [1/2]
static double DGtal::AngleComputer::min |
( |
double | i, |
|
|
double | j ) |
|
static |
Equivalent to 'less( i, j ) ? i : j'.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- the smallest angle of [i] and [j] in a window 'pi'.
◆ min() [2/2]
static float DGtal::AngleComputer::min |
( |
float | i, |
|
|
float | j ) |
|
static |
Equivalent to 'less( i, j ) ? i : j'.
- Parameters
-
i | any angle in [0:2pi[ |
j | any angle in [0:2pi[ |
- Returns
- the smallest angle of [i] and [j] in a window 'pi'.
◆ posDiff() [1/2]
static double DGtal::AngleComputer::posDiff |
( |
double | j, |
|
|
double | i ) |
|
static |
Performs j - i modulo 2pi, assuming less(i,j) is true.
- Parameters
-
j | any angle in [0:2pi[ |
i | any angle in [0:2pi[ |
- Returns
- the value j - i, always positive.
◆ posDiff() [2/2]
static float DGtal::AngleComputer::posDiff |
( |
float | j, |
|
|
float | i ) |
|
static |
Performs j - i modulo 2pi, assuming less(i,j) is true.
- Parameters
-
j | any angle in [0:2pi[ |
i | any angle in [0:2pi[ |
- Returns
- the value j - i, always positive.
The documentation for this struct was generated from the following file: