DGtal 1.3.0
Loading...
Searching...
No Matches
Public Types | Static Public Attributes
DGtal::ConvexCellComplex< TPoint > Struct Template Reference

Aim: represents a d-dimensional complex in a d-dimensional space with the following properties and restrictions: More...

#include <DGtal/geometry/volumes/ConvexCellComplex.h>

Public Types

typedef TPoint Point
 
typedef std::size_t Index
 
typedef std::size_t Size
 
typedef Index Cell
 
typedef std::pair< Index, bool > Face
 
typedef Index Vertex
 
typedef std::vector< IndexIndexRange
 
typedef std::vector< VertexVertexRange
 
typedef std::vector< FaceFaceRange
 
typedef Point::Coordinate Scalar
 
typedef PointVector< dimension, ScalarVector
 
typedef PointVector< dimension, double > RealPoint
 
typedef PointVector< dimension, double > RealVector
 

Public Member Functions

Standard services
 ConvexCellComplex ()
 Defaut constructor. More...
 
void clear ()
 Clears the complex (as if it was just default constructed). More...
 
Size nbCells () const
 
Size nbFaces () const
 
Size nbVertices () const
 
Primal structure topology services
Cell infiniteCell () const
 
bool isInfinite (const Cell c) const
 
Face opposite (const Face f) const
 
const FaceRangecellFaces (const Cell c) const
 
const VertexRangecellVertices (const Cell c) const
 
const std::vector< VertexRange > & allCellVertices () const
 
VertexRange faceVertices (const Face f) const
 
Cell faceCell (const Face f) const
 
VertexRange faceComplementVertices (const Face f) const
 
Primal structure geometry services
std::vector< PointcellVertexPositions (const Cell c) const
 
std::vector< PointfaceVertexPositions (const Face f) const
 
Point position (const Vertex v) const
 
RealPoint toReal (const Point p) const
 
template<typename LatticePoint >
LatticePoint toLattice (const RealPoint p, double factor=1.0) const
 
RealPoint cellBarycenter (const Cell c) const
 
template<typename LatticePolytope >
LatticePolytope cellLatticePolytope (const Cell c, const double factor=1.0) const
 
const VectorfaceNormal (const Face f) const
 
Scalar faceIntercept (const Face f) const
 
bool hasFaceGeometry () const
 
void requireFaceGeometry ()
 Forces the computation of face geometry. More...
 
void unrequireFaceGeometry ()
 Release ressources allocated to face geometry. More...
 
Interface
void selfDisplay (std::ostream &out) const
 
bool isValid () const
 

Data Fields

Data for primal structure
std::vector< FaceRangecell_faces
 Tells if the face geometry has been computed. More...
 
std::vector< VertexRangecell_vertices
 Tells if the face geometry has been computed. More...
 
std::vector< Celltrue_face_cell
 Tells if the face geometry has been computed. More...
 
std::vector< Cellfalse_face_cell
 Tells if the face geometry has been computed. More...
 
std::vector< VertexRangetrue_face_vertices
 Tells if the face geometry has been computed. More...
 
std::vector< Pointvertex_position
 Tells if the face geometry has been computed. More...
 
bool has_face_geometry
 Tells if the face geometry has been computed. More...
 
std::vector< Vectortrue_face_normal
 Contains the outward oriented normal of each 'true' face. More...
 
std::vector< Scalartrue_face_intercept
 Contains the intercept of each 'true' face. More...
 

Static Public Attributes

static const Dimension dimension = TPoint::dimension
 
static const Index INFINITE_CELL = (Index) -1
 

Protected Member Functions

Protected services
void computeCellVertices (const Cell c) const
 
void computeFaceGeometry ()
 Computes for each face its outward oriented normal vector. More...
 
std::pair< Vector, ScalarcomputeHalfSpace (const VertexRange &v) const
 
void reorderFaceVertices (Index f)
 

Detailed Description

template<typename TPoint>
struct DGtal::ConvexCellComplex< TPoint >

Aim: represents a d-dimensional complex in a d-dimensional space with the following properties and restrictions:

Description of template class 'ConvexCellComplex'

- all cells (maximal and below) are convex

All cells are indexed per dimension, starting from 0, hence:

The ConvexCellComplex is used to represent the Delaunay decomposition into convex cells of a range of points. It is built with ConvexityHelper functions like ConvexityHelper::computeDelaunayCellComplex.

Template Parameters
TPointan arbitrary model of Point.
See also
moduleQuickHull
Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp, geometry/tools/exampleQuickHull3D.cpp, and geometry/tools/exampleRationalBallDelaunay3D.cpp.

Definition at line 85 of file ConvexCellComplex.h.

Member Typedef Documentation

◆ Cell

template<typename TPoint >
typedef Index DGtal::ConvexCellComplex< TPoint >::Cell

Definition at line 93 of file ConvexCellComplex.h.

◆ Face

template<typename TPoint >
typedef std::pair< Index, bool > DGtal::ConvexCellComplex< TPoint >::Face

Definition at line 94 of file ConvexCellComplex.h.

◆ FaceRange

template<typename TPoint >
typedef std::vector< Face > DGtal::ConvexCellComplex< TPoint >::FaceRange

Definition at line 98 of file ConvexCellComplex.h.

◆ Index

template<typename TPoint >
typedef std::size_t DGtal::ConvexCellComplex< TPoint >::Index

Definition at line 89 of file ConvexCellComplex.h.

◆ IndexRange

template<typename TPoint >
typedef std::vector< Index > DGtal::ConvexCellComplex< TPoint >::IndexRange

Definition at line 96 of file ConvexCellComplex.h.

◆ Point

template<typename TPoint >
typedef TPoint DGtal::ConvexCellComplex< TPoint >::Point

Definition at line 88 of file ConvexCellComplex.h.

◆ RealPoint

template<typename TPoint >
typedef PointVector< dimension, double > DGtal::ConvexCellComplex< TPoint >::RealPoint

Definition at line 102 of file ConvexCellComplex.h.

◆ RealVector

template<typename TPoint >
typedef PointVector< dimension, double > DGtal::ConvexCellComplex< TPoint >::RealVector

Definition at line 103 of file ConvexCellComplex.h.

◆ Scalar

template<typename TPoint >
typedef Point::Coordinate DGtal::ConvexCellComplex< TPoint >::Scalar

Definition at line 100 of file ConvexCellComplex.h.

◆ Size

template<typename TPoint >
typedef std::size_t DGtal::ConvexCellComplex< TPoint >::Size

Definition at line 90 of file ConvexCellComplex.h.

◆ Vector

template<typename TPoint >
typedef PointVector< dimension, Scalar > DGtal::ConvexCellComplex< TPoint >::Vector

Definition at line 101 of file ConvexCellComplex.h.

◆ Vertex

template<typename TPoint >
typedef Index DGtal::ConvexCellComplex< TPoint >::Vertex

Definition at line 95 of file ConvexCellComplex.h.

◆ VertexRange

template<typename TPoint >
typedef std::vector< Vertex > DGtal::ConvexCellComplex< TPoint >::VertexRange

Definition at line 97 of file ConvexCellComplex.h.

Constructor & Destructor Documentation

◆ ConvexCellComplex()

template<typename TPoint >
DGtal::ConvexCellComplex< TPoint >::ConvexCellComplex ( )
inline

Defaut constructor.

Definition at line 111 of file ConvexCellComplex.h.

112 { clear(); }
void clear()
Clears the complex (as if it was just default constructed).

References DGtal::ConvexCellComplex< TPoint >::clear().

Member Function Documentation

◆ allCellVertices()

template<typename TPoint >
const std::vector< VertexRange > & DGtal::ConvexCellComplex< TPoint >::allCellVertices ( ) const
inline
Returns
the range of vertex ranges giving for each cell its vertices.

Definition at line 181 of file ConvexCellComplex.h.

182 {
183 if ( cell_vertices.empty() )
184 cell_vertices.resize( nbCells() );
185 for ( Index c = 0; c < nbCells(); ++c )
186 if ( cell_vertices[ c ].empty() )
188 return cell_vertices;
189 }
SMesh::Index Index
void computeCellVertices(const Cell c) const
std::vector< VertexRange > cell_vertices
Tells if the face geometry has been computed.

References DGtal::ConvexCellComplex< TPoint >::cell_vertices, DGtal::ConvexCellComplex< TPoint >::computeCellVertices(), and DGtal::ConvexCellComplex< TPoint >::nbCells().

◆ cellBarycenter()

template<typename TPoint >
RealPoint DGtal::ConvexCellComplex< TPoint >::cellBarycenter ( const Cell  c) const
inline
Parameters
[in]cany valid cell
Returns
the cell barycenter.
Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp, and geometry/tools/exampleRationalBallDelaunay3D.cpp.

Definition at line 286 of file ConvexCellComplex.h.

287 {
288 ASSERT( ! isInfinite( c ) );
289 RealPoint b;
290 const auto& vtcs = cellVertices( c );
291 for ( auto v : vtcs )
292 b += toReal( position( v ) );
293 return b / vtcs.size();
294 }
const VertexRange & cellVertices(const Cell c) const
Point position(const Vertex v) const
RealPoint toReal(const Point p) const
bool isInfinite(const Cell c) const
Z2i::RealPoint RealPoint

References DGtal::ConvexCellComplex< TPoint >::cellVertices(), DGtal::ConvexCellComplex< TPoint >::isInfinite(), DGtal::ConvexCellComplex< TPoint >::position(), and DGtal::ConvexCellComplex< TPoint >::toReal().

Referenced by main().

◆ cellFaces()

template<typename TPoint >
const FaceRange & DGtal::ConvexCellComplex< TPoint >::cellFaces ( const Cell  c) const
inline
Parameters
[in]cany valid cell
Returns
its range of faces.
Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp, and geometry/tools/exampleRationalBallDelaunay3D.cpp.

Definition at line 161 of file ConvexCellComplex.h.

162 { return cell_faces[ c ]; }
std::vector< FaceRange > cell_faces
Tells if the face geometry has been computed.

References DGtal::ConvexCellComplex< TPoint >::cell_faces.

Referenced by DGtal::ConvexCellComplex< TPoint >::cellLatticePolytope(), DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry(), and main().

◆ cellLatticePolytope()

template<typename TPoint >
template<typename LatticePolytope >
LatticePolytope DGtal::ConvexCellComplex< TPoint >::cellLatticePolytope ( const Cell  c,
const double  factor = 1.0 
) const
inline
Precondition
hasFaceGeometry() == true
Parameters
[in]cany valid cell
[in]factorthe dilation applied to all points before integer conversion
Returns
the corresponding polytope

Definition at line 302 of file ConvexCellComplex.h.

303 {
304 ASSERT( hasFaceGeometry() );
305 ASSERT( ! isInfinite( c ) );
306 typedef typename LatticePolytope::Point LatticePoint;
307 typedef typename LatticePolytope::HalfSpace HalfSpace;
308 typedef typename LatticePolytope::Domain Domain;
309 const auto vtcs = cellVertices( c );
310 std::vector< LatticePoint > pts;
311 for ( auto v : vtcs )
312 pts.push_back( toLattice< LatticePoint >( position ( v ), factor ) );
313 LatticePoint l = pts[ 0 ];
314 LatticePoint u = pts[ 0 ];
315 for ( const auto& p : pts ) {
316 l = l.inf( p );
317 u = u.sup( p );
318 }
319 Domain domain( l, u );
320 std::vector< HalfSpace > HS;
321 for ( auto f : cellFaces( c ) ) {
322 HS.emplace_back( faceNormal( f ), faceIntercept( f ) );
323 }
324 return LatticePolytope( domain, HS.cbegin(), HS.cend(), false );
325 }
const Vector & faceNormal(const Face f) const
Scalar faceIntercept(const Face f) const
const FaceRange & cellFaces(const Cell c) const
Domain domain
HyperRectDomain< Space > Domain

References DGtal::ConvexCellComplex< TPoint >::cellFaces(), DGtal::ConvexCellComplex< TPoint >::cellVertices(), domain, DGtal::ConvexCellComplex< TPoint >::faceIntercept(), DGtal::ConvexCellComplex< TPoint >::faceNormal(), DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry(), DGtal::ConvexCellComplex< TPoint >::isInfinite(), and DGtal::ConvexCellComplex< TPoint >::position().

◆ cellVertexPositions()

template<typename TPoint >
std::vector< Point > DGtal::ConvexCellComplex< TPoint >::cellVertexPositions ( const Cell  c) const
inline
Parameters
[in]cany valid cell (non infinite)
Returns
the range of positions of all cell vertices

Definition at line 233 of file ConvexCellComplex.h.

234 {
235 ASSERT( ! isInfinite( c ) );
236 const auto vtcs = cellVertices( c );
237 std::vector< Point > pts( vtcs.size() );
238 std::transform( vtcs.cbegin(), vtcs.cend(), pts.begin(),
239 [&] ( Vertex v ) { return this->position( v ); } );
240 return pts;
241 }
TriMesh::Vertex Vertex

References DGtal::ConvexCellComplex< TPoint >::cellVertices(), and DGtal::ConvexCellComplex< TPoint >::isInfinite().

◆ cellVertices()

template<typename TPoint >
const VertexRange & DGtal::ConvexCellComplex< TPoint >::cellVertices ( const Cell  c) const
inline

◆ clear()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::clear ( )
inline

Clears the complex (as if it was just default constructed).

Definition at line 115 of file ConvexCellComplex.h.

116 {
117 cell_faces.clear();
118 cell_vertices.clear();
119 true_face_cell.clear();
120 false_face_cell.clear();
121 true_face_vertices.clear();
122 vertex_position.clear();
123 has_face_geometry = false;
124 true_face_normal.clear();
125 true_face_intercept.clear();
126 }
std::vector< VertexRange > true_face_vertices
Tells if the face geometry has been computed.
std::vector< Scalar > true_face_intercept
Contains the intercept of each 'true' face.
std::vector< Cell > false_face_cell
Tells if the face geometry has been computed.
std::vector< Cell > true_face_cell
Tells if the face geometry has been computed.
bool has_face_geometry
Tells if the face geometry has been computed.
std::vector< Vector > true_face_normal
Contains the outward oriented normal of each 'true' face.
std::vector< Point > vertex_position
Tells if the face geometry has been computed.

References DGtal::ConvexCellComplex< TPoint >::cell_faces, DGtal::ConvexCellComplex< TPoint >::cell_vertices, DGtal::ConvexCellComplex< TPoint >::false_face_cell, DGtal::ConvexCellComplex< TPoint >::has_face_geometry, DGtal::ConvexCellComplex< TPoint >::true_face_cell, DGtal::ConvexCellComplex< TPoint >::true_face_intercept, DGtal::ConvexCellComplex< TPoint >::true_face_normal, DGtal::ConvexCellComplex< TPoint >::true_face_vertices, and DGtal::ConvexCellComplex< TPoint >::vertex_position.

Referenced by DGtal::ConvexCellComplex< TPoint >::ConvexCellComplex().

◆ computeCellVertices()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::computeCellVertices ( const Cell  c) const
inlineprotected

computes the vertices of a given cell c upon request.

Parameters
cany valid cell

Definition at line 432 of file ConvexCellComplex.h.

433 {
434 std::set< Vertex > vertices;
435 for ( auto f : cell_faces[ c ] )
436 vertices.insert( true_face_vertices[ f.first ].cbegin(),
437 true_face_vertices[ f.first ].cend() );
438 cell_vertices[ c ] = VertexRange( vertices.cbegin(), vertices.cend() );
439 }
std::pair< typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator, typename graph_traits< DGtal::DigitalSurface< TDigitalSurfaceContainer > >::vertex_iterator > vertices(const DGtal::DigitalSurface< TDigitalSurfaceContainer > &digSurf)
std::vector< Vertex > VertexRange

References DGtal::ConvexCellComplex< TPoint >::cell_faces, DGtal::ConvexCellComplex< TPoint >::cell_vertices, and DGtal::ConvexCellComplex< TPoint >::true_face_vertices.

Referenced by DGtal::ConvexCellComplex< TPoint >::allCellVertices(), and DGtal::ConvexCellComplex< TPoint >::cellVertices().

◆ computeFaceGeometry()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry ( )
inlineprotected

Computes for each face its outward oriented normal vector.

Definition at line 442 of file ConvexCellComplex.h.

443 {
444 true_face_normal .resize( nbFaces() );
445 true_face_intercept.resize( nbFaces() );
446 // Compute normals and intercepts
447 for ( Index f = 0; f < nbFaces(); ++f ) {
448 std::tie( true_face_normal[ f ], true_face_intercept[ f ] )
450 if ( true_face_normal[ f ] == Vector::zero )
451 trace.error() << "[ConvexCellComplex::computeFaceGeometry]"
452 << " null normal vector at face " << f << std::endl;
453 }
454 // Orient them consistently
455 for ( Index c = 0; c < nbCells(); c++ ) {
456 const auto& c_vtcs = cellVertices( c );
457 for ( auto f : cellFaces( c ) ) {
458 if ( ! f.second ) continue; // process only 'true' faces
459 const auto ov = faceComplementVertices( f );
460 ASSERT( ! ov.empty() );
461 const Vector N = true_face_normal [ f.first ];
462 const Scalar nu = true_face_intercept[ f.first ];
463 const Scalar iv = N.dot( position( ov.front() ) );
464 if ( ( iv - nu ) > 0 ) {
465 // Should be inside
466 true_face_normal [ f.first ] = -N;
467 true_face_intercept[ f.first ] = -nu;
468 std::reverse( true_face_vertices[ f.first ].begin(),
469 true_face_vertices[ f.first ].end() );
470 }
471 reorderFaceVertices( f.first );
472 }
473 }
474 has_face_geometry = true;
475 }
static Self zero
Static const for zero PointVector.
Definition: PointVector.h:1595
std::ostream & error()
Trace trace
Definition: Common.h:154
VertexRange faceComplementVertices(const Face f) const
std::pair< Vector, Scalar > computeHalfSpace(const VertexRange &v) const
FreemanChain< int >::Vector Vector

References DGtal::ConvexCellComplex< TPoint >::cellFaces(), DGtal::ConvexCellComplex< TPoint >::cellVertices(), DGtal::ConvexCellComplex< TPoint >::computeHalfSpace(), DGtal::PointVector< dim, TEuclideanRing, TContainer >::dot(), DGtal::Trace::error(), DGtal::ConvexCellComplex< TPoint >::faceComplementVertices(), DGtal::ConvexCellComplex< TPoint >::has_face_geometry, DGtal::ConvexCellComplex< TPoint >::nbCells(), DGtal::ConvexCellComplex< TPoint >::nbFaces(), DGtal::ConvexCellComplex< TPoint >::position(), DGtal::ConvexCellComplex< TPoint >::reorderFaceVertices(), DGtal::trace, DGtal::ConvexCellComplex< TPoint >::true_face_intercept, DGtal::ConvexCellComplex< TPoint >::true_face_normal, DGtal::ConvexCellComplex< TPoint >::true_face_vertices, and DGtal::PointVector< dim, TEuclideanRing, TContainer >::zero.

Referenced by DGtal::ConvexCellComplex< TPoint >::requireFaceGeometry().

◆ computeHalfSpace()

template<typename TPoint >
std::pair< Vector, Scalar > DGtal::ConvexCellComplex< TPoint >::computeHalfSpace ( const VertexRange v) const
inlineprotected
Parameters
va range of vertices of size() >= dimension
Returns
the pair normal/intercept of the face.

Definition at line 480 of file ConvexCellComplex.h.

481 {
483 Matrix A;
484 Vector N;
485 Scalar c;
486 for ( int i = 1; i < dimension; i++ )
487 for ( int j = 0; j < dimension; j++ )
488 A.setComponent( i-1, j, position( v[ i ] )[ j ] - position( v[ 0 ] )[ j ] );
489 for ( int j = 0; j < dimension; j++ )
490 N[ j ] = A.cofactor( dimension-1, j );
491 c = N.dot( position( v[ 0 ] ) );
492 return std::make_pair( N, c );
493 }
Aim: implements basic MxN Matrix services (M,N>=1).
Definition: SimpleMatrix.h:76
void setComponent(const DGtal::Dimension i, const DGtal::Dimension j, const Component &aValue)
static const Dimension dimension

References DGtal::ConvexCellComplex< TPoint >::dimension, DGtal::PointVector< dim, TEuclideanRing, TContainer >::dot(), and DGtal::ConvexCellComplex< TPoint >::position().

Referenced by DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry().

◆ faceCell()

template<typename TPoint >
Cell DGtal::ConvexCellComplex< TPoint >::faceCell ( const Face  f) const
inline
Parameters
[in]fany face
Returns
its associated cell (or INFINITE_CELL)

Definition at line 202 of file ConvexCellComplex.h.

203 {
204 return f.second ? true_face_cell[ f.first ] : false_face_cell[ f.first ];
205 }

References DGtal::ConvexCellComplex< TPoint >::false_face_cell, and DGtal::ConvexCellComplex< TPoint >::true_face_cell.

Referenced by DGtal::ConvexCellComplex< TPoint >::faceComplementVertices().

◆ faceComplementVertices()

template<typename TPoint >
VertexRange DGtal::ConvexCellComplex< TPoint >::faceComplementVertices ( const Face  f) const
inline
Parameters
[in]fany face
Returns
the vertices within the cell containing f that are not in f.

Definition at line 211 of file ConvexCellComplex.h.

212 {
213 VertexRange result;
214 const Cell c = faceCell( f );
215 if ( isInfinite( c ) ) return result;
216 const auto& c_vtcs = cellVertices( c );
217 auto f_vtcs = true_face_vertices[ f.first ];
218 std::sort( f_vtcs.begin(), f_vtcs.end() );
219 for ( auto v : c_vtcs )
220 if ( ! std::binary_search( f_vtcs.cbegin(), f_vtcs.cend(), v ) )
221 result.push_back( v );
222 return result;
223 }
Cell faceCell(const Face f) const
KSpace::Cell Cell
TriMesh::VertexRange VertexRange

References DGtal::ConvexCellComplex< TPoint >::cellVertices(), DGtal::ConvexCellComplex< TPoint >::faceCell(), DGtal::ConvexCellComplex< TPoint >::isInfinite(), and DGtal::ConvexCellComplex< TPoint >::true_face_vertices.

Referenced by DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry().

◆ faceIntercept()

template<typename TPoint >
Scalar DGtal::ConvexCellComplex< TPoint >::faceIntercept ( const Face  f) const
inline
Precondition
hasFaceGeometry() == true
Parameters
[in]fany face
Returns
its intercept.

Definition at line 341 of file ConvexCellComplex.h.

342 {
343 ASSERT( hasFaceGeometry() );
344 ASSERT( f.first < nbFaces() );
345 if ( f.second ) return true_face_intercept[ f.first ];
346 else return -true_face_intercept[ f.first ];
347 }

References DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry(), DGtal::ConvexCellComplex< TPoint >::nbFaces(), and DGtal::ConvexCellComplex< TPoint >::true_face_intercept.

Referenced by DGtal::ConvexCellComplex< TPoint >::cellLatticePolytope().

◆ faceNormal()

template<typename TPoint >
const Vector & DGtal::ConvexCellComplex< TPoint >::faceNormal ( const Face  f) const
inline
Precondition
hasFaceGeometry() == true
Parameters
[in]fany face
Returns
its normal oriented outward its enclosing cell.

Definition at line 330 of file ConvexCellComplex.h.

331 {
332 ASSERT( hasFaceGeometry() );
333 ASSERT( f.first < nbFaces() );
334 if ( f.second ) return true_face_normal[ f.first ];
335 else return -true_face_normal[ f.first ];
336 }

References DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry(), DGtal::ConvexCellComplex< TPoint >::nbFaces(), and DGtal::ConvexCellComplex< TPoint >::true_face_normal.

Referenced by DGtal::ConvexCellComplex< TPoint >::cellLatticePolytope().

◆ faceVertexPositions()

template<typename TPoint >
std::vector< Point > DGtal::ConvexCellComplex< TPoint >::faceVertexPositions ( const Face  f) const
inline
Parameters
[in]fany face
Returns
the range of positions of all face vertices

Definition at line 245 of file ConvexCellComplex.h.

246 {
247 const auto vtcs = faceVertices( f );
248 std::vector< Point > pts( vtcs.size() );
249 std::transform( vtcs.cbegin(), vtcs.cend(), pts.begin(),
250 [&] ( Vertex v ) { return this->position( v ); } );
251 return pts;
252 }
VertexRange faceVertices(const Face f) const

References DGtal::ConvexCellComplex< TPoint >::faceVertices().

◆ faceVertices()

template<typename TPoint >
VertexRange DGtal::ConvexCellComplex< TPoint >::faceVertices ( const Face  f) const
inline
Parameters
[in]fany face
Returns
its vertices (in order depending on the side of the face)
Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp, and geometry/tools/exampleRationalBallDelaunay3D.cpp.

Definition at line 193 of file ConvexCellComplex.h.

194 {
195 if ( f.second ) return true_face_vertices[ f.first ];
196 return VertexRange( true_face_vertices[ f.first ].crbegin(),
197 true_face_vertices[ f.first ].crend() );
198 }

References DGtal::ConvexCellComplex< TPoint >::true_face_vertices.

Referenced by DGtal::ConvexCellComplex< TPoint >::faceVertexPositions(), and main().

◆ hasFaceGeometry()

template<typename TPoint >
bool DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry ( ) const
inline

◆ infiniteCell()

template<typename TPoint >
Cell DGtal::ConvexCellComplex< TPoint >::infiniteCell ( ) const
inline
Returns
the index of the infinite cell.

Definition at line 145 of file ConvexCellComplex.h.

146 { return INFINITE_CELL; }

References DGtal::ConvexCellComplex< TPoint >::INFINITE_CELL.

◆ isInfinite()

template<typename TPoint >
bool DGtal::ConvexCellComplex< TPoint >::isInfinite ( const Cell  c) const
inline

◆ isValid()

template<typename TPoint >
bool DGtal::ConvexCellComplex< TPoint >::isValid ( ) const
inline

Checks the validity/consistency of the object.

Returns
'true' if the object is valid (at least one cell), 'false' otherwise.

Definition at line 419 of file ConvexCellComplex.h.

420 {
421 return nbCells() != 0;
422 }

References DGtal::ConvexCellComplex< TPoint >::nbCells().

◆ nbCells()

template<typename TPoint >
Size DGtal::ConvexCellComplex< TPoint >::nbCells ( ) const
inline

◆ nbFaces()

template<typename TPoint >
Size DGtal::ConvexCellComplex< TPoint >::nbFaces ( ) const
inline

◆ nbVertices()

template<typename TPoint >
Size DGtal::ConvexCellComplex< TPoint >::nbVertices ( ) const
inline
Returns
the number of vertices

Definition at line 135 of file ConvexCellComplex.h.

136 { return vertex_position.size(); }

References DGtal::ConvexCellComplex< TPoint >::vertex_position.

Referenced by DGtal::ConvexCellComplex< TPoint >::selfDisplay().

◆ opposite()

template<typename TPoint >
Face DGtal::ConvexCellComplex< TPoint >::opposite ( const Face  f) const
inline
Parameters
[in]fany face
Returns
its opposite face

Definition at line 156 of file ConvexCellComplex.h.

157 { return std::make_pair( f.first, ! f.second ); }

◆ position()

template<typename TPoint >
Point DGtal::ConvexCellComplex< TPoint >::position ( const Vertex  v) const
inline

◆ reorderFaceVertices()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::reorderFaceVertices ( Index  f)
inlineprotected

Given a face index f, reorder all its vertices so that they are oriented consistently with respect to the normal.

Parameters
fany valid face index
Note
the order of points is consistent if, picking any d-simplex in order in this range, their associated half-spaces have all the same orientation.

Definition at line 503 of file ConvexCellComplex.h.

504 {
505 VertexRange& result = true_face_vertices[ f ];
506 Vector N = true_face_normal [ f ];
507 // Sort a facet such that its points, taken in order, have
508 // always the same orientation of the facet. More precisely,
509 // facets span a `dimension-1` vector space. There are thus
510 // dimension-2 fixed points, and the last ones (at least two)
511 // may be reordered.
512 VertexRange splx( dimension );
513 for ( Dimension k = 0; k < dimension-2; k++ )
514 splx[ k ] = result[ k ];
515 std::sort( result.begin()+dimension-2, result.end(),
516 [&] ( Index i, Index j )
517 {
518 splx[ dimension-2 ] = i;
519 splx[ dimension-1 ] = j;
520 const auto H = computeHalfSpace( splx );
521 const auto orient = N.dot( H.first );
522 return orient > 0;
523 } );
524 }
DGtal::uint32_t Dimension
Definition: Common.h:137

References DGtal::ConvexCellComplex< TPoint >::dimension, DGtal::ConvexCellComplex< TPoint >::true_face_normal, and DGtal::ConvexCellComplex< TPoint >::true_face_vertices.

Referenced by DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry().

◆ requireFaceGeometry()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::requireFaceGeometry ( )
inline

Forces the computation of face geometry.

Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp, and geometry/tools/exampleRationalBallDelaunay3D.cpp.

Definition at line 354 of file ConvexCellComplex.h.

355 {
356 if ( ! hasFaceGeometry() )
358 }
void computeFaceGeometry()
Computes for each face its outward oriented normal vector.

References DGtal::ConvexCellComplex< TPoint >::computeFaceGeometry(), and DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry().

Referenced by main().

◆ selfDisplay()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::selfDisplay ( std::ostream &  out) const
inline

Writes/Displays the object on an output stream.

Parameters
outthe output stream where the object is written.

Definition at line 405 of file ConvexCellComplex.h.

406 {
407 out << "[ConvexCellComplex<" << dimension << ">"
408 << " #C=" << nbCells()
409 << " #F=" << nbFaces()
410 << " #V=" << nbVertices();
411 if ( hasFaceGeometry() ) out << " hasFaceGeometry";
412 out << " ]";
413 }

References DGtal::ConvexCellComplex< TPoint >::dimension, DGtal::ConvexCellComplex< TPoint >::hasFaceGeometry(), DGtal::ConvexCellComplex< TPoint >::nbCells(), DGtal::ConvexCellComplex< TPoint >::nbFaces(), and DGtal::ConvexCellComplex< TPoint >::nbVertices().

◆ toLattice()

template<typename TPoint >
template<typename LatticePoint >
LatticePoint DGtal::ConvexCellComplex< TPoint >::toLattice ( const RealPoint  p,
double  factor = 1.0 
) const
inline
Parameters
[in]pany real point
[in]factorthe dilation applied to point p before integer conversion
Returns
its embedding in the real Euclidean space.

Definition at line 275 of file ConvexCellComplex.h.

276 {
277 LatticePoint x;
278 for ( Dimension k = 0; k < dimension; ++k )
279 x[ k ] = (typename LatticePoint::Coordinate) round( p[ k ] * factor );
280 return x;
281 }

References DGtal::ConvexCellComplex< TPoint >::dimension.

◆ toReal()

template<typename TPoint >
RealPoint DGtal::ConvexCellComplex< TPoint >::toReal ( const Point  p) const
inline
Parameters
[in]pany point
Returns
its embedding in the real Euclidean space.
Examples
geometry/tools/exampleLatticeBallDelaunay3D.cpp.

Definition at line 263 of file ConvexCellComplex.h.

264 {
265 RealPoint x;
266 for ( Dimension k = 0; k < dimension; ++k )
267 x[ k ] = (double) p[ k ];
268 return x;
269 }

References DGtal::ConvexCellComplex< TPoint >::dimension.

Referenced by DGtal::ConvexCellComplex< TPoint >::cellBarycenter(), and main().

◆ unrequireFaceGeometry()

template<typename TPoint >
void DGtal::ConvexCellComplex< TPoint >::unrequireFaceGeometry ( )
inline

Field Documentation

◆ cell_faces

template<typename TPoint >
std::vector< FaceRange > DGtal::ConvexCellComplex< TPoint >::cell_faces

◆ cell_vertices

template<typename TPoint >
std::vector< VertexRange > DGtal::ConvexCellComplex< TPoint >::cell_vertices
mutable

◆ dimension

template<typename TPoint >
const Dimension DGtal::ConvexCellComplex< TPoint >::dimension = TPoint::dimension
static

◆ false_face_cell

template<typename TPoint >
std::vector< Cell > DGtal::ConvexCellComplex< TPoint >::false_face_cell

Tells if the face geometry has been computed.

Definition at line 382 of file ConvexCellComplex.h.

Referenced by DGtal::ConvexCellComplex< TPoint >::clear(), and DGtal::ConvexCellComplex< TPoint >::faceCell().

◆ has_face_geometry

template<typename TPoint >
bool DGtal::ConvexCellComplex< TPoint >::has_face_geometry

◆ INFINITE_CELL

template<typename TPoint >
const Index DGtal::ConvexCellComplex< TPoint >::INFINITE_CELL = (Index) -1
static

◆ true_face_cell

template<typename TPoint >
std::vector< Cell > DGtal::ConvexCellComplex< TPoint >::true_face_cell

◆ true_face_intercept

template<typename TPoint >
std::vector< Scalar > DGtal::ConvexCellComplex< TPoint >::true_face_intercept

◆ true_face_normal

template<typename TPoint >
std::vector< Vector > DGtal::ConvexCellComplex< TPoint >::true_face_normal

◆ true_face_vertices

template<typename TPoint >
std::vector< VertexRange > DGtal::ConvexCellComplex< TPoint >::true_face_vertices

◆ vertex_position

template<typename TPoint >
std::vector< Point > DGtal::ConvexCellComplex< TPoint >::vertex_position

The documentation for this struct was generated from the following file: