45{
53
56
57 using TriOr = MeshVoxelizer6::TriangleOrientation;
58
59
60 SECTION(
"Test distance point/plan 3D")
61 {
62
63 const PointR3 A(38.6908 , 14.5441 , -0.71205);
64 const PointR3 B(34.6171 , 13.5999 , 2.44455);
65 const PointR3 C(37.4205 , 2.44239 , 6.31301);
66
67
68 const PointZ3 v(35, 2, 5);
69
70 const VectorR3 e1 = A - B;
71 const VectorR3 e2 = A - C;
72
73 double distance = MeshVoxelizer6::distance(A, e1.crossProduct(e2), v);
74
77 }
78
79
80 SECTION(
"Test if 2D point is inside triangle 2D")
81 {
82
83 PointR2 A(1.0, 1.0);
84 PointR2 B(2.0, 3.0);
85 PointR2 C(3.0, 1.0);
86
88 OrientationFunctor orientationFunctor;
89
90
92
93 if(! pointPredicate(A, B, C))
94 {
95 std::swap(A, C);
96 }
97
98
99
100
101
102
103 PointR2 v;
104
105 v[0] = 3.0;
106 v[1] = 3.0;
107 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::OUTSIDE);
108
109 v[0] = 2.0;
110 v[1] = 2.0;
111 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::INSIDE);
112
113 v[0] = 2;
114 v[1] = 1;
115 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::ONEDGE);
116
117 v[0] = 3;
118 v[1] = 1;
119 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::ONVERTEX);
120
121
122 A = { 16.3299, 0. };
123 B = { 0., 16.3299 };
124 C = { -16.3299, 0. };
125 v = { -17., 0.};
126 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::OUTSIDE);
127
128
129 A = { -0.891282, 9.91201 };
130 B = { -1.40823, 9.91261 };
131 C = { -1.36963, 9.37414 };
132 v = { -1.16961, 9.83039 };
133 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::INSIDE);
134 }
135
136
137 SECTION(
"Test if 3D point is inside voxel")
138 {
139
140 PointR3 P(-0.89, 9.91, 0.86);
141 PointZ3 v(-1, 10, 1);
142
143 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
true);
144
145 P[0] = -1.41;
146 P[1] = 9.91;
147 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
true);
148
149 P[0] = -1.37;
150 P[1] = 9.37;
151 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
false);
152
153 P[0] = -1.17;
154 P[1] = 9.83;
155 P[2] = 0;
156 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
false);
157 }
158
159
160 SECTION(
"26-sep voxelization of a single triangle")
161 {
164 MeshVoxelizer26 voxelizer;
165
166 voxelizer.voxelize(outputSet,
Point(5,0,0),
Point(0,5,0),
Point(0,0,5));
168 for(auto p: outputSet)
169 board << p ;
170 board.
saveOBJ(
"triangle26-dig.obj");
171
172 REQUIRE( outputSet.size() == 46 );
173 }
174
175
176 SECTION(
"6-sep voxelization of a single triangle")
177 {
180 MeshVoxelizer6 voxelizer;
181
182 voxelizer.voxelize(outputSet,
Point(5,0,0),
Point(0,5,0),
Point(0,0,5));
184 for(auto p: outputSet)
185 board << p ;
186 board.
saveOBJ(
"triangle6-dig.obj");
187
188 REQUIRE( outputSet.size() == 21 );
189 }
190
191
192 SECTION(
"6-sep voxelization of a OFF cube mesh")
193 {
194
199 MeshVoxelizer6 voxelizer;
200
202
203 voxelizer.voxelize(outputSet, inputMesh, 10.0 );
205 for(auto p: outputSet)
206 board << p ;
208
210
211 REQUIRE( outputSet.size() == 2562 );
212 }
213
214 SECTION(
"26-sep voxelization of a OFF cube mesh")
215 {
216
221 MeshVoxelizer26 voxelizer;
222
224
225 voxelizer.voxelize(outputSet, inputMesh, 10.0 );
227 for(auto p: outputSet)
228 board << p ;
229 board.
saveOBJ(
"box26-dig.obj");
230
232
233 REQUIRE( outputSet.size() == 4162 );
234 }
235}
The class Board3D is a type of Display3D which export the figures in the format OBJ/MTL when calling ...
void saveOBJ(const std::string &filename, const bool isNormalized=false)
Aim: A wrapper class around a STL associative container for storing sets of digital points within som...
Aim: A container class for storing sets of digital points within some given domain.
Aim: Class that implements an orientation functor, ie. it provides a way to compute the orientation o...
Aim: A class for computing the digitization of a triangle or a Mesh.
Aim: This class is defined to represent a surface mesh through a set of vertices and faces....
Aim: Implements basic operations that will be used in Point and Vector classes.
Aim: Small adapter to models of COrientationFunctor2. It is a model of concepts::CPointPredicate....
DGtal::LinearOperator< Calculus, dim, duality, dim, duality > diagonal(const DGtal::KForm< Calculus, dim, duality > &kform)
static bool importOFFFile(const std::string &filename, DGtal::Mesh< TPoint > &aMesh, bool invertVertexOrder=false)
SECTION("Testing constant forward iterators")
REQUIRE(domain.isInside(aPoint))