2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * @file ArithmeticalDSSFactory.ih
19 * @author Tristan Roussillon (\c tristan.roussillon@liris.cnrs.fr )
20 * Laboratoire d'InfoRmatique en Image et Systèmes d'information - LIRIS (CNRS, UMR 5205), CNRS, France
24 * Implementation of inline methods defined in ArithmeticalDSSFactory.h
26 * This file is part of the DGtal library.
30//////////////////////////////////////////////////////////////////////////////
33#include "DGtal/geometry/curves/ArithmeticalDSSConvexHull.h"
34#include "DGtal/kernel/NumberTraits.h"
35#include "DGtal/base/OneItemOutputIterator.h"
36//////////////////////////////////////////////////////////////////////////////
38///////////////////////////////////////////////////////////////////////////////
39// IMPLEMENTATION of inline methods.
40///////////////////////////////////////////////////////////////////////////////
42//-----------------------------------------------------------------------------
43template <typename TCoordinate, typename TInteger, unsigned short adjacency>
45DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
46DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::
47createSubsegment(const DSL& aDSL, const Point& aF, const Point& aL)
49 ASSERT( aDSL.isInDSL( aF ) );
50 ASSERT( aDSL.isInDSL( aL ) );
51 ASSERT( aDSL.beforeOrEqual(aF, aL) );
53 //specific case: DSS of one point
61 //running smartCH to compute the minimal characteristics AND the leaning points
62 OneItemOutputIterator<Point> lastUpperVertex, lastLowerVertex;
63 using namespace functions;
65 Vector v = smartCH( aDSL, aF, ( aDSL.position(aL) - aDSL.position(aF) ),
66 lastUpperVertex, lastLowerVertex );
69 Point U = lastUpperVertex.get();
70 DSL dsl( v[1], v[0], DSL::remainder(v[1], v[0], U) );
71 Point L = lastLowerVertex.get() + dsl.shift();
72 //NB: U (resp. L) can be the first or the last upper (resp. lower) leaning point
73 // of the DSS according to the relative order of their position.
74 ASSERT( dsl.position(v) != 0 );
75 Position qUForward = ( dsl.position(aL) - dsl.position(U) ) / dsl.position(v);
76 Position qLForward = ( dsl.position(aL) - dsl.position(L) ) / dsl.position(v);
77 Position qUBackward = ( dsl.position(U) - dsl.position(aF) ) / dsl.position(v);
78 Position qLBackward = ( dsl.position(L) - dsl.position(aF) ) / dsl.position(v);
79 return DSS( v[1], v[0], dsl.mu(), DSL::remainder(v[1], v[0], L), aF, aL,
80 (U - qUBackward * v), (U + qUForward * v ),
81 (L - qLBackward * v), (L + qLForward * v ),
82 dsl.steps(), dsl.shift() );
86//-----------------------------------------------------------------------------
87template <typename TCoordinate, typename TInteger, unsigned short adjacency>
89DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
90DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::
91createSubsegment(const DSS& aDSS, const Point& aF, const Point& aL)
93 ASSERT( aDSS.dsl().isInDSL( aF ) );
94 ASSERT( aDSS.dsl().isInDSL( aL ) );
95 ASSERT( aDSS.dsl().beforeOrEqual(aF, aL) );
96 ASSERT( aDSS.dsl().beforeOrEqual(aDSS.back(), aL) );
97 ASSERT( aDSS.dsl().beforeOrEqual(aF, aDSS.front()) );
99 //specific case: DSS of one point
107 DSS leftSubsegment = createLeftSubsegment(aDSS, aL);
108 DSS tmp = leftSubsegment.negate();
109 DSS subsegment = createLeftSubsegment(tmp, aF);
110 return subsegment.negate();
114//-----------------------------------------------------------------------------
115template <typename TCoordinate, typename TInteger, unsigned short adjacency>
117DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
118DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::
119createLeftSubsegment(const DSS& aDSS, const Point& aL)
121 //running reversedSmartCH to compute the minimal characteristics AND the leaning points
122 OneItemOutputIterator<Point> lastUpperVertex, lastLowerVertex;
123 using namespace functions;
124 Vector v = reversedSmartCH( aDSS, aDSS.position(aL),
125 lastUpperVertex, lastLowerVertex );
128 Point U = lastUpperVertex.get();
129 DSL dsl( v[1], v[0], DSL::remainder(v[1], v[0], U) );
130 Point L = lastLowerVertex.get() + dsl.shift();
131 //NB: U (resp. L) can be the first or the last upper (resp. lower) leaning point
132 // of the DSS according to the relative order of their position.
133 ASSERT( dsl.position(v) != 0 );
134 Position qUForward = ( dsl.position(aL) - dsl.position(U) ) / dsl.position(v);
135 Position qLForward = ( dsl.position(aL) - dsl.position(L) ) / dsl.position(v);
136 Position qUBackward = ( dsl.position(U) - dsl.position(aDSS.back()) ) / dsl.position(v);
137 Position qLBackward = ( dsl.position(L) - dsl.position(aDSS.back()) ) / dsl.position(v);
138 return DSS( v[1], v[0], dsl.mu(), DSL::remainder(v[1], v[0], L), aDSS.back(), aL,
139 (U - qUBackward * v), (U + qUForward * v ),
140 (L - qLBackward * v), (L + qLForward * v ),
141 dsl.steps(), dsl.shift() );
143//-----------------------------------------------------------------------------
144template <typename TCoordinate, typename TInteger, unsigned short adjacency>
146DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
147DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::createPattern(const Point& aF, const Point& aL)
150 //specific case: a and b are both null
159 //upper leaning points
160 Point Uf, Ul, Lf, Ll;
166 IntegerComputer<Coordinate> computer;
167 Coordinate gcd = computer.gcd(u2[0], u2[1]);
169 //irreductible direction vector
170 Vector u = Vector(u2[0]/gcd, u2[1]/gcd);
173 Integer mu = DSL::remainder(u[1], u[0], Uf);
176 DSL dsl(u[1], u[0], mu);
178 //lower leaning points
179 if ( dsl.steps().second == Vector(NumberTraits<TCoordinate>::ZERO,NumberTraits<TCoordinate>::ZERO) )
180 { //specific case: there is only one step,
181 //ie. either a == 0, or b == 0, or
182 //(a == 1 and b == 1) in the naive case
186 return DSS(dsl.a(), dsl.b(),
189 dsl.steps(), dsl.shift());
193 Coordinate signedUnity = -1;
194 Vector v = bezoutVector(u[1], u[0], signedUnity);
195 Lf = Uf + v - dsl.shift()*signedUnity;
196 Ll = Uf + u*(gcd-1) + v - dsl.shift()*signedUnity;
198 return DSS(dsl.a(), dsl.b(),
199 mu, DSL::remainder(u[1], u[0], Lf),
202 dsl.steps(), dsl.shift());
207//-----------------------------------------------------------------------------
208template <typename TCoordinate, typename TInteger, unsigned short adjacency>
210DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
211DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::createDSS(const Coordinate& aA, const Coordinate& aB, const Point& aFirst, const Point& aLast, const Point& aU)
213 Point Uf, Ul, Lf, Ll;
214 DSL dsl(aA,aB,DSL::remainder(aA,aB,aU));
219 //Upper leaning points
221 Vector t = (aLast-aU)/u;
222 Integer k1 = (t[0]>t[1])?t[1]:t[0];
227 Integer k2 = (t[0]>t[1])?t[1]:t[0];
231 //Lower leaning points
232 if ( dsl.steps().second == Vector(NumberTraits<TCoordinate>::ZERO,NumberTraits<TCoordinate>::ZERO) )
233 { //specific case: there is only one step,
234 //ie. either a == 0, or b == 0, or
235 //(a == 1 and b == 1) in the naive case
241 Coordinate signedUnity = -1;
242 Vector v = bezoutVector(aA, aB, signedUnity);
243 v += dsl.shift(); // "forward" vector from an upper to a lower leaning point
244 Vector w = v - u; // "backward" vector from an upper to a lower leaning point
245 if(dsl.beforeOrEqual(aFirst,Uf+w)) // there is a lower leaning point before Uf
250 if(dsl.beforeOrEqual(Ul+v,aLast))
256 DSS res(dsl.a(), dsl.b(), aFirst, aLast, Uf, Ul, Lf, Ll);
258 assert(res.isValid());
266//-----------------------------------------------------------------------------
267template <typename TCoordinate, typename TInteger, unsigned short adjacency>
269DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency>
270DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::createReversedPattern(const Point& aF, const Point& aL)
272 DGtal::ArithmeticalDSS<TCoordinate,TInteger,adjacency> pattern = createPattern(aL, aF);
273 return pattern.negate();
276//-----------------------------------------------------------------------------
277template <typename TCoordinate, typename TInteger, unsigned short adjacency>
279typename DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::Vector
280DGtal::ArithmeticalDSSFactory<TCoordinate,TInteger,adjacency>::
281bezoutVector(const Coordinate& aA,
282 const Coordinate& aB,
283 const Coordinate& aR)
285 ASSERT( (aR == 1)||(aR == -1) );
287 //compute one Bezout vector
288 IntegerComputer<Coordinate> computer;
289 Vector v = computer.extendedEuclid(aA, -aB, aR);
290 ASSERT( (aA*v[0]-aB*v[1]) == aR );
292 // compute the one whose component
293 // have a sign equal to the direction
295 // modify v if and only if aB and v[0] or aA and v[1] have strictly different signs
297 if ( (aB > 0)&&(v[0] < 0) )
299 else if ( (aB < 0)&&(v[0] > 0) )
301 else if ( ( aA > 0 )&&(v[1] < 0) )
303 else if ( ( aA < 0 )&&(v[1] > 0) )
306 ASSERT( (aA*v[0]-aB*v[1]) == aR );
308 // Assert that for the pairs (aA,v[1]) and (aB,v[0]) either one member is null, or they have the same sign
309 ASSERT( (aA ==0 || v[1] == 0 || (aA > 0 && v[1] > 0) || (aA < 0 && v[1] <0)) && (aB ==0 || v[0] == 0 || (aB > 0 && v[0] > 0) || (aB < 0 && v[0] <0)));