DGtal 1.4.2
Loading...
Searching...
No Matches
OrderedAlphabet.ih
1/**
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 *
15 **/
16
17/**
18 * @file OrderedAlphabet.ih
19 * @author Jacques-Olivier Lachaud (\c jacques-olivier.lachaud@univ-savoie.fr )
20 * Laboratory of Mathematics (CNRS, UMR 5807), University of Savoie, France
21 * @author Laurent Provot (\c Laurent.Provot@loria.fr )
22 * LORIA (CNRS, UMR 7503), Nancy University, France
23 *
24 * @date 2010/07/01
25 *
26 * Implementation of inline methods defined in OrderedAlphabet.h
27 *
28 * This file is part of the DGtal library.
29 */
30
31///////////////////////////////////////////////////////////////////////////////
32// IMPLEMENTATION of inline methods.
33///////////////////////////////////////////////////////////////////////////////
34
35//////////////////////////////////////////////////////////////////////////////
36#include <cstdlib>
37//////////////////////////////////////////////////////////////////////////////
38
39
40
41///////////////////////////////////////////////////////////////////////////////
42// Implementation of inline methods //
43
44/**
45 * Constructor from letters
46 *
47 * @param first the first letter of the alphabet.
48 * @param nb the number of letters of the alphabet.
49 *
50 * Exemple: OrderedAlphabet( '0', 4 ) defines the alphabet for
51 * 4-connected freeman chains.
52 */
53inline
54DGtal::OrderedAlphabet::OrderedAlphabet( char first, unsigned int nb )
55 : myFirst( first ), myNb( nb )
56{
57 myOrder = new unsigned int[ nb ];
58
59 ASSERT( ( myOrder != 0 )
60 && "[DGtal::OrderedAlphabet::OrderedAlphabet( char first, int nb )] error in new: no memory left ?" );
61 for ( unsigned int i = 0; i < myNb; ++i )
62 myOrder[ i ] = i;
63}
64
65/**
66 * @param c any valid letter in this alphabet.
67 *
68 * @return the index of the letter [c] in the order relation,
69 * starting from 0 to myNb-1.
70 */
71inline
72unsigned int
73DGtal::OrderedAlphabet::order( char c ) const
74{
75 ASSERT( ( c - myFirst ) < (int) myNb
76 && "[DGtal::OrderedAlphabet::order( char c )] invalid letter." );
77 return myOrder[ c - myFirst ];
78}
79
80/**
81 * @param i the index of some letter in the order relation,
82 * between 0 and myNb-1.
83 *
84 * @return c the corresponding letter in this alphabet.
85 *
86 * NB: O(nb of letters in the alphabet).
87 */
88inline
89char
90DGtal::OrderedAlphabet::letter( unsigned int i ) const
91{
92 ASSERT( i < myNb );
93 for ( unsigned int j = 0; j < myNb; ++j )
94 if ( myOrder[ j ] == i )
95 return static_cast<char>(myFirst + j);
96 return myFirst;
97}
98
99
100/**
101 * @param c1 a letter in the alphabet
102 * @param c2 another letter in the same alphabet.
103 * @return 'true' iff c1 < c2
104 */
105inline
106bool
107DGtal::OrderedAlphabet::less( char c1, char c2 ) const
108{
109 return myOrder[ c1 - myFirst ] < myOrder[ c2 - myFirst ];
110}
111
112/**
113 * @param c1 a letter in the alphabet
114 * @param c2 another letter in the same alphabet.
115 * @return 'true' iff c1 <= c2
116 */
117inline
118bool
119DGtal::OrderedAlphabet::lessOrEqual( char c1, char c2 ) const
120{
121 return myOrder[ c1 - myFirst ] <= myOrder[ c2 - myFirst ];
122}
123
124/**
125 * @param c1 a letter in the alphabet
126 * @param c2 another letter in the same alphabet.
127 * @return 'true' iff c1 == c2
128 */
129inline
130bool
131DGtal::OrderedAlphabet::equal( char c1, char c2 ) const
132{
133 return c1 == c2;
134}
135
136
137///////////////////////////////////////////////////////////////////////////////
138// Implementation of inline functions and external operators //
139
140/**
141 * Overloads 'operator<<' for displaying objects of class 'OrderedAlphabet'.
142 * @param out the output stream where the object is written.
143 * @param object the object of class 'OrderedAlphabet' to write.
144 * @return the output stream after the writing.
145 */
146inline
147std::ostream&
148DGtal::operator<< ( std::ostream & out,
149 const OrderedAlphabet & object )
150{
151 object.selfDisplay ( out );
152 return out;
153}
154
155
156
157// //
158///////////////////////////////////////////////////////////////////////////////
159
160
161
162/**
163 * Destructor.
164 */
165inline
166DGtal::OrderedAlphabet::~OrderedAlphabet()
167{
168 if ( myOrder != 0 )
169 delete[ ] myOrder;
170}
171
172/**
173 * @return the current ordered alphabet.
174 */
175inline
176std::string
177DGtal::OrderedAlphabet::orderedAlphabet() const
178{
179 char *tbl;
180 tbl = (char *)malloc((myNb + 1)*sizeof(char));
181 for ( unsigned int i = 0; i < myNb; ++i )
182 {
183 tbl[ myOrder[ i ] ] = static_cast<char>(myFirst + i);
184 }
185 tbl[ myNb ] = '\0';
186 std::string s( tbl );
187 free(tbl);
188 return s;
189}
190
191/**
192 * Shift a0 < a1 < ... < an to a1 < ... < an < a0
193 */
194inline
195void
196DGtal::OrderedAlphabet::shiftLeft()
197{
198 unsigned int* p = myOrder;
199 unsigned int* q = myOrder + myNb;
200 while ( p != q )
201 {
202 unsigned int k = *p;
203 *p = ( k == 0 ) ? myNb - 1 : k - 1;
204 ++p;
205 }
206}
207
208/**
209 * Shift a0 < a1 < ... < an to an < a0 < ... < an-1
210 */
211inline
212void
213DGtal::OrderedAlphabet::shiftRight()
214{
215 unsigned int* p = myOrder;
216 unsigned int* q = myOrder + myNb;
217 while ( p != q )
218 {
219 unsigned int k = *p + 1;
220 *p = ( k == myNb ) ? 0 : k;
221 ++p;
222 }
223}
224
225/**
226 * Reverse the order a0 < a1 < ... < an to an < ... < a1 < a0
227 */
228inline
229void
230DGtal::OrderedAlphabet::reverse()
231{
232 unsigned int* p = myOrder;
233 unsigned int* q = myOrder + myNb;
234 while ( p != q )
235 {
236 *p = myNb - 1 - *p;
237 ++p;
238 }
239}
240
241/**
242 * Reverse the order a0 < a1 < ... < an to a3 < a2 < a1 < a0 < an < ...
243 */
244inline
245void
246DGtal::OrderedAlphabet::reverseAround12()
247{
248 unsigned int* p = myOrder;
249 unsigned int* q = myOrder + myNb;
250 while ( p != q )
251 {
252 *p = ( myNb + 3 - *p ) % myNb;
253 ++p;
254 }
255}
256
257
258
259
260/**
261 * Gives the first lyndon factor of the word [w] starting at
262 * position [s] in this alphabet.
263 *
264 * @param len (returns) the length of the primitive Lyndon factor
265 * (which starts at position s).
266 *
267 * @param nb (returns) the number of times the Lyndon factor appears.
268 *
269 * @param w a word
270 * @param s the starting index in [w].
271 * @param e the index after the end in [w] (s<e).
272 */
273inline
274void
275DGtal::OrderedAlphabet::firstLyndonFactor
276( size_t & len, size_t & nb,
277 const std::string & w,
278 index_t s, index_t e ) const
279{
280 index_t i = s;
281 index_t j = s+1;
282 while ( ( j < e ) && ( lessOrEqual( w[ i ], w[ j ] ) ) )
283 {
284 if ( equal( w[ i ], w[ j ] ) )
285 ++i;
286 else
287 i = s;
288 ++j;
289 }
290 len = (size_t) j - i;
291 nb = ( (size_t) ( j - s ) ) / len;
292}
293
294
295/**
296 * Gives the first lyndon factor of the cyclic word [w]
297 * starting at position [s] in this alphabet.
298 *
299 * @param len (returns) the length of the primitive Lyndon factor
300 * (which starts at position s).
301 *
302 * @param nb (returns) the number of times the Lyndon factor appears.
303 *
304 * @param w a word
305 * @param s the starting index in [w].
306 * @param e the index after the end in [w] (s and e arbitrary).
307 */
308inline
309void
310DGtal::OrderedAlphabet::firstLyndonFactorMod
311( size_t & len, size_t & nb,
312 const std::string & w,
313 index_t s, index_t e ) const
314{
315 size_t modulo = (DGtal::OrderedAlphabet::size_t)w.size();
316 DGtal::ModuloComputer< Integer > mc( modulo );
317 index_t i = s;
318 index_t j = mc.next( s );
319 while ( ( j != e ) && ( lessOrEqual( w[ i ], w[ j ] ) ) )
320 {
321 if ( equal( w[ i ], w[ j ] ) )
322 mc.increment( i );
323 else
324 i = s;
325 mc.increment( j );
326 }
327 len = j >= i ? (size_t) ( j - i )
328 : (size_t) ( j + modulo - i );
329 if (len == 0)
330 nb = 0;
331 else
332 nb = ( (size_t) ( ( j + modulo - s ) % modulo ) ) / len;
333}
334
335
336/**
337 * @param len (returns) the length of the primitive Lyndon factor
338 * (which starts at position s).
339 *
340 * @param nb (returns) the number of times the Lyndon factor appears.
341 *
342 * @param w a word which starts with a1 or a2 at position s.
343 * @param s the starting index in [w].
344 * @param e the index after the end in [w] (s<e).
345 */
346inline
347bool DGtal::OrderedAlphabet::duvalPP( size_t & len, size_t & nb,
348 const std::string & w, index_t s, index_t e) const
349{
350 ASSERT( ( order( w[ s ] ) == 1 ) || ( order( w[ s ] ) == 2 ) );
351 index_t i = s;
352 index_t j = s+1;
353 index_t p = s;
354 index_t q = s+1;
355 while ( ( j < e ) && ( lessOrEqual( w[ i ], w[ j ] ) ) )
356 {
357 if ( equal( w[ i ], w[ j ] ) )
358 {
359 if ( j == q )
360 q += (p-s+1);
361 ++i;
362 }
363 else
364 {
365 if ( ( j != q ) || ( order ( w[ j ] ) != 2 ) )
366 {
367 len = j-s; nb = 0;
368 return false;
369 }
370 index_t tmp = p;
371 p = q;
372 q += q - tmp;
373 i = s;
374 }
375 ++j;
376 }
377 len = (size_t) j - i;
378 nb = ( (size_t) (j-s) ) / len;
379 return true;
380}
381
382/**
383 * @param len (returns) the length of the primitive Lyndon factor
384 * (which starts at position s).
385 *
386 * @param nb (returns) the number of times the Lyndon factor appears.
387 *
388 * @param n1 (returns) the number of occurrences of the letter a1
389 * in the Lyndon factor
390 *
391 * @param n2 (returns) the number of occurrences of the letter a2
392 * in the Lyndon factor
393 *
394 * @param lf1 (returns) the number of occurrences of the letter a1
395 * from 's' to the first lower leaning point.
396 *
397 * @param lf2 (returns) the number of occurrences of the letter a2
398 * from 's' to the first lower leaning point.
399 *
400 * @param w a word which starts with a1 or a2 at position s.
401 * @param s the starting index in [w].
402 * @param e the index after the end in [w] (s<e).
403 */
404inline
405bool
406DGtal::OrderedAlphabet::duvalPPtoDSS
407( size_t & len, size_t & nb,
408 unsigned int & n1, unsigned int & n2,
409 unsigned int & lf1, unsigned int & lf2,
410 const std::string & w,
411 index_t s, index_t e
412 ) const
413{
414 ASSERT( ( order( w[ s ] ) == 1 ) || ( order( w[ s ] ) == 2 ) );
415 index_t i = s;
416 index_t j = s+1;
417 index_t p = s;
418 index_t q = s+1;
419 unsigned int slope1 = (order( w[ i ] ) == 1) ? 1 : 0;
420 unsigned int slope2 = (order( w[ i ] ) == 2) ? 1 : 0;
421 lf1 = n1 = slope1;
422 lf2 = n2 = slope2;
423 nb = 1;
424
425 while ( ( j < e ) && ( lessOrEqual( w[ i ], w[ j ] ) ) ) {
426
427 //This 'if/else if' is added to compute the vector defined by
428 //the Christoffel word, this is usefull in order to compute the
429 //leaning points.
430 if (order( w[ j ] ) == 1)
431 ++slope1;
432 else if (order( w[ j ] ) == 2)
433 ++slope2;
434
435 if ( equal( w[ i ], w[ j ] ) ) {
436 if ( j == q ) {
437 q += (p-s+1);
438
439 //A repetition is read when j==s+(nb+1)*(p-s+1)-1
440 }
441 if ( j == nb * (p-s+1) + p ) {
442 ++nb;
443 }
444 ++i;
445 } else {
446 if ( ( j != q ) || ( order ( w[ j ] ) != 2 ) ) {
447 break;
448 }
449 index_t tmp = p;
450 p = q;
451 q += q - tmp;
452 i = s;
453
454 // Extra information to compute the leaning points
455 lf1 = lf1 + (nb-1)*n1;
456 lf2 = lf2 + (nb-1)*n2;
457 n1 = slope1;
458 n2 = slope2;
459 nb = 1;
460 }
461 ++j;
462 }
463 len = (size_t) j - i;
464
465 ASSERT( nb == (size_t) (j-s) / len);
466 return true;
467}
468
469
470/**
471 * Adaptation of Duval's algorithm to extract the first Lyndon factor
472 * (FLF). Whilst scanning the Lyndon factor, it also checks whether it
473 * is a Christoffel word or not. It returns 'true' if the FLF is
474 * indeed a Christoffel word, otherwise returns false. It starts the
475 * extraction at position [s] in the cyclic word [w].
476 *
477 * The alphabet takes the form a0 < a1 < a2 < ... < an-1. [w] starts
478 * with a1 or a2 at position s.
479 *
480 * See [Provencal, Lachaud 2009].
481 *
482 * @param len (returns) the length of the primitive Lyndon factor
483 * (which starts at position s).
484 *
485 * @param nb (returns) the number of times the Lyndon factor appears.
486 *
487 * @param w a (cyclic) word which starts with a1 or a2 at position s.
488 *
489 * @param s the starting index in [w].
490 * @param e the index after the end in [w] (s and e arbitrary).
491 */
492inline
493bool
494DGtal::OrderedAlphabet::duvalPPMod( size_t & len, size_t & nb,
495 const std::string & w,
496 index_t s, index_t e ) const
497{
498 ASSERT( ( order( w[ s ] ) == 1 )
499 || ( order( w[ s ] ) == 2 ) );
500 size_t modulo = (DGtal::OrderedAlphabet::size_t)w.size();
501 ModuloComputer< Integer > mc( modulo );
502 ModuloComputer< Integer >::UnsignedInteger i = s;
503 index_t j = mc.next( s );
504 unsigned int p = 1;
505 unsigned int q = 2;
506 while ( ( j != e ) && ( lessOrEqual( w[ i ], w[ j ] ) ) )
507 {
508 if ( equal( w[ i ], w[ j ] ) )
509 {
510 if ( j == mc.cast( s + q - 1 ) )
511 q += p;
512 mc.increment( i );
513 }
514 else
515 {
516 if ( ( j != mc.cast( s + q - 1 ) ) || ( order ( w[ j ] ) != 2 ) )
517 {
518 len = j; nb = 0;
519 return false;
520 }
521 unsigned int tmp = p;
522 p = q;
523 q += q - tmp;
524 i = s;
525 }
526 mc.increment( j );
527 }
528 len = j >= i ? (size_t) ( j - i )
529 : (size_t) ( j + modulo - i );
530 nb = ( (size_t) ( ( j + modulo - s ) % modulo ) ) / len;
531 return true;
532}
533
534
535///////////////////////////////////////////////////////////////////////////////
536// Interface - public :
537
538/**
539 * Writes/Displays the object on an output stream.
540 * @param out the output stream where the object is written.
541 */
542inline
543void
544DGtal::OrderedAlphabet::selfDisplay ( std::ostream & out ) const
545{
546 out << "[OrderedAlphabet]";
547 out << " " << orderedAlphabet() << std::endl;
548}
549
550/**
551 * Checks the validity/consistency of the object.
552 * @return 'true' if the object is valid, 'false' otherwise.
553 */
554inline
555bool
556DGtal::OrderedAlphabet::isValid() const
557{
558 return true;
559}
560
561
562
563///////////////////////////////////////////////////////////////////////////////
564// ----------------------- MLP services ------------------------------
565
566/**
567 * Extracts the next edge of the minimum length polygon starting from
568 * position [s] on the word [w]. The alphabet may be modified
569 * (reversed or shifted). The output alphabet is some a0 < a1 < a2 < ...
570 *
571 * @param nb_a1 (returns) the number of letters a1 in the extracted edge (a1
572 * in the output alphabet)
573 *
574 * @param nb_a2 (returns) the number of letters a2 in the extracted edge (a2
575 * in the output alphabet)
576 *
577 * @param w the input (cyclic) word (may be modified in the process).
578 *
579 * @param s the starting point in the word (updated).
580 *
581 * @param cvx (updates) this boolean is flipped only if a change of
582 * convexity is detected.
583 *
584 * @return the number of letters of the extracted edge.
585 */
586inline
587DGtal::OrderedAlphabet::size_t
588DGtal::OrderedAlphabet::nextEdge( size_t & nb_a1,
589 size_t & nb_a2,
590 std::string & w,
591 index_t & s,
592 bool & cvx )
593{
594 ModuloComputer< Integer > mc( (unsigned int)w.size() );
595 size_t l;
596 size_t len;
597 size_t nb;
598 bool inC = duvalPPMod( len, nb, w, s, s );
599 if ( ! inC )
600 // case : change of convexity
601 {
602 // JOL : temporary change of letter w[ s ]
603 char tmp = w[ s ];
604 index_t tmp_s = s;
605 w[ s ] = letter( 2 ); // a3
606 this->reverseAround12();
607 cvx = ! cvx;
608 l = nextEdge( nb_a1, nb_a2, w, s, cvx );
609 // JOL : former letter is put back in string.
610 w[ tmp_s ] = tmp;
611 }
612 else if ( ( len == 1 ) && ( order( w[ s ] ) == 1 ) )
613 // case u=a1 => Quadrant change
614 {
615 this->shiftRight();
616 s = mc.cast( s + nb );
617 nb_a1 = 0;
618 nb_a2 = nb - 1;
619 l = nb;
620 }
621 else
622 { // standard (convex) case.
623 l = len * nb;
624 char a2 = letter( 2 );
625 nb_a1 = len;
626 nb_a2 = 0;
627 index_t ss = s;
628 s = mc.cast( s + l );
629 while ( len != 0 )
630 {
631 if ( w[ ss ] == a2 ) ++nb_a2;
632 mc.increment( ss );
633 --len;
634 }
635 nb_a1 -= nb_a2;
636 nb_a1 *= nb;
637 nb_a2 *= nb;
638 }
639 return l;
640}
641
642
643///////////////////////////////////////////////////////////////////////////////
644// Internals - private :
645
646// //
647///////////////////////////////////////////////////////////////////////////////