DGtal 1.4.2
Loading...
Searching...
No Matches
StarShaped2D.ih
1/**
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU Lesser General Public License as
4 * published by the Free Software Foundation, either version 3 of the
5 * License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 *
15 **/
16
17/**
18 * @file StarShaped2D.ih
19 * @author David Coeurjolly (\c david.coeurjolly@liris.cnrs.fr )
20 * Laboratoire d'InfoRmatique en Image et Systèmes d'information - LIRIS (CNRS, UMR 5205), CNRS, France
21 *
22 * @date 2011/04/12
23 *
24 * Implementation of inline methods defined in StarShaped2D.h
25 *
26 * This file is part of the DGtal library.
27 */
28
29
30//////////////////////////////////////////////////////////////////////////////
31#include <cstdlib>
32//////////////////////////////////////////////////////////////////////////////
33
34///////////////////////////////////////////////////////////////////////////////
35// IMPLEMENTATION of inline methods.
36///////////////////////////////////////////////////////////////////////////////
37
38///////////////////////////////////////////////////////////////////////////////
39// ----------------------- Standard services ------------------------------
40
41
42/////////////////////////////////////////////////////////////////////////////
43// ------------------------- star-shaped services -------------------------
44
45/**
46 * @param p any point in the plane.
47 *
48 * @return 'true' if the point is inside the shape, 'false' if it
49 * is strictly outside.
50 */
51template<typename TSpace>
52inline
53DGtal::Orientation
54DGtal::StarShaped2D<TSpace>::orientation( const RealPoint& p ) const
55{
56 RealPoint x_rel( x(parameter(p)) - center() );
57 RealPoint p_rel( p - center() );
58
59 const double diff = p_rel.norm() - x_rel.norm();
60
61 return isAlmostEqual(diff,0.) ? ON : (diff > 0. ? OUTSIDE : INSIDE);
62}
63
64
65/**
66 * @param t any angle between 0 and 2*Pi.
67 *
68 * @return the vector (x'(t),y'(t)) made unitary which is the unit
69 * tangent to the shape boundary.
70 */
71template<typename TSpace>
72inline
73typename DGtal::StarShaped2D<TSpace>::RealPoint
74DGtal::StarShaped2D<TSpace>::tangent( const double t ) const
75{
76 const RealPoint tgt( xp(t) );
77 return tgt / tgt.norm();
78}
79
80
81/**
82 * @param t any angle between 0 and 2*Pi.
83 *
84 * @return the vector (x''(t),y''(t)) made unitary which is the unit
85 * normal to the shape boundary looking inside the shape.
86b */
87template<typename TSpace>
88inline
89typename DGtal::StarShaped2D<TSpace>::RealPoint
90DGtal::StarShaped2D<TSpace>::normal( const double t ) const
91{
92 RealPoint tgt( tangent(t) );
93 return RealPoint( -tgt[1], tgt[0] );
94}
95
96
97/**
98 * @param t any angle between 0 and 2*Pi.
99 *
100 * @return the algebraic curvature at point (x(t),y(t)), positive
101 * is convex, negative is concave when shape is to the left and
102 * the shape boundary is followed counterclockwise.
103 */
104template<typename TSpace>
105inline
106double
107DGtal::StarShaped2D<TSpace>::curvature( const double t ) const
108{
109 RealPoint tgt( xp(t) );
110 RealPoint dt( xpp(t) );
111 const double norm = tgt.norm();
112 return - ( dt[0] * tgt[1] - dt[1] * tgt[0] ) / ( norm * norm * norm );
113}
114
115
116/**
117 * @param t1 any angle between 0 and 2*Pi.
118 * @param t2 any angle between 0 and 2*Pi, further from [t1].
119 * @param nb the number of points used to estimate the arclength between x(t1) and x(t2).
120 * @return the estimated arclength.
121 */
122template<typename TSpace>
123inline
124double
125DGtal::StarShaped2D<TSpace>::arclength( const double t1, double t2, const unsigned int nb ) const
126{
127 while ( t2 < t1 ) t2 += 2.0*M_PI;
128
129 RealPoint x0( x(t1) );
130 double l = 0.;
131 // JOL 2008/08/28
132 for ( unsigned int i = 1; i <= nb; ++i )
133 {
134 const double t = ((t2 - t1) * i) / nb;
135 const RealPoint x1( x(t1 + t) );
136 l += sqrt(
137 (x1[0] - x0[0]) * (x1[0] - x0[0])
138 + (x1[1] - x0[1]) * (x1[1] - x0[1])
139 );
140 x0 = x1;
141 }
142 return l;
143}
144
145/**
146 * Return a point on the segment [inner;outer] that is at most \f$\epsilon\f$ from the shape in \f$L_2\f$ norm.
147 *
148 * @param inner a point that is inside the shape
149 * @param outer a point that is outside the shape
150 * @param epsilon error parameter
151 *
152 * @return the intersected point.
153 */
154template <typename TSpace>
155inline
156typename DGtal::StarShaped2D<TSpace>::RealPoint
157DGtal::StarShaped2D<TSpace>::findIntersection( const RealPoint& inner,
158 const RealPoint& outer,
159 const double epsilon ) const
160{
161 const typename DGtal::StarShaped2D<TSpace>::RealPoint mid = RealPoint(0.5 * (inner + outer));
162
163 // We found a point that is at distance epsilon from the shape
164 if((inner - outer).norm() < epsilon)
165 return mid;
166 // The point lies inside the shape
167 else if(orientation(mid) == Orientation::INSIDE)
168 return findIntersection( mid, outer, epsilon );
169 // The point is right onto the shape
170 else if(orientation(mid) == Orientation::ON)
171 return mid;
172 // The point lies outside the shape
173 else if(orientation(mid) == Orientation::OUTSIDE)
174 return findIntersection( inner, mid, epsilon );
175
176 ASSERT( false ); //this should not be reached
177 return RealPoint(0., 0.);
178}
179
180/**
181 * Return a point that lies between the projection of left and right and that is the closest regarding the \f$L_2\f$ norm
182 *
183 * @param p the point to be projected
184 * @param left a point that is supposed to be projected left of p (regarding the angle)
185 * @param right a point that is supposed to be projected right of p (regarding the angle)
186 * @param step precision of the approximation
187 *
188 * @return a point.
189 **/
190template <typename TSpace>
191inline
192typename DGtal::StarShaped2D<TSpace>::RealPoint
193DGtal::StarShaped2D<TSpace>::closestPointWithWitnesses( const RealPoint& p,
194 const RealPoint& left, const RealPoint& right, const int step ) const
195{
196 if ( step == 0 )
197 return RealPoint(0., 0.);
198
199 const double left_angl = parameter(left);
200 const double right_angl = parameter(right);
201
202 std::vector<RealPoint> points;
203
204 for( int i = 0; i < step; i++ )
205 {
206 double arc = fabs(right_angl - left_angl);
207 if(arc > M_PI) arc = 2 * M_PI - arc;
208 const double current_angl = fmod(left_angl + arc / step * i, 2 * M_PI);
209 points.push_back(x(current_angl));
210 }
211
212 RealPoint p_return(points[0]);
213 double p_norm = (p_return - p).norm();
214
215 for( unsigned int i = 1; i < points.size(); i++ )
216 {
217 const double p_norm_current = (points[i] - p).norm();
218 if ( p_norm_current < p_norm )
219 {
220 p_return = points[i];
221 p_norm = p_norm_current;
222 }
223 }
224
225 return p_return;
226}
227
228///////////////////////////////////////////////////////////////////////////////
229// Interface - public :
230
231/**
232 * Writes/Displays the object on an output stream.
233 * @param out the output stream where the object is written.
234 */
235template <typename T>
236inline
237void
238DGtal::StarShaped2D<T>::selfDisplay ( std::ostream & out ) const
239{
240 out << "[StarShaped2D]";
241}
242
243/**
244 * Checks the validity/consistency of the object.
245 * @return 'true' if the object is valid, 'false' otherwise.
246 */
247template <typename T>
248inline
249bool
250DGtal::StarShaped2D<T>::isValid() const
251{
252 return true;
253}
254
255
256
257///////////////////////////////////////////////////////////////////////////////
258// Implementation of inline functions //
259
260template <typename T>
261inline
262std::ostream&
263DGtal::operator<< ( std::ostream & out,
264 const StarShaped2D<T> & object )
265{
266 object.selfDisplay( out );
267 return out;
268}
269
270// //
271///////////////////////////////////////////////////////////////////////////////
272
273