73#include "DGtal/base/Common.h"
74#include "DGtal/io/viewers/PolyscopeViewer.h"
75#include "DGtal/io/Color.h"
76#include "DGtal/shapes/Shapes.h"
77#include "DGtal/helpers/StdDefs.h"
78#include "DGtal/helpers/Shortcuts.h"
79#include "DGtal/images/ImageContainerBySTLVector.h"
80#include "DGtal/geometry/volumes/NeighborhoodConvexityAnalyzer.h"
92template <
typename KSpace,
int N >
97 template <
typename ImagePtr >
104 auto&
image = *bimage;
110 std::vector< Point > localCompX;
113 std::cout <<
"Cfg=" << cfg << std::endl;
114 for (
auto q : localCompX ) std::cout << q;
115 std::cout << std::endl;
116 geom = ( cvx ? 0x1 : 0x0 ) | ( ccvx ? 0x2 : 0x0 );
117 std::cout <<
"cvx=" << cvx <<
" ccvx=" << ccvx << std::endl;
118 std::cout <<
"geom=" << geom << std::endl;
122 template <
typename ImagePtr >
125 run(
const KSpace& aK,
const std::vector<Point>& pts, ImagePtr bimage )
129 auto&
image = *bimage;
130 std::vector<int> result;
131 std::map< Point, int > computed;
139 if ( i % 100 == 0 )
trace.progressBar( i, nb );
140 auto it = computed.find( p );
141 if ( it == computed.end() )
146 if ( cvx ) nb_cvx += 1;
147 if ( ccvx ) nb_ccvx += 1;
148 geom = ( cvx ? 0x1 : 0x0 ) | ( ccvx ? 0x2 : 0x0 );
149 computed[ p ] = geom;
151 else geom = it->second;
152 result.push_back( geom );
155 trace.info() <<
"nb_cvx=" << nb_cvx <<
" nb_ccvx=" << nb_ccvx << std::endl;
125 run(
const KSpace& aK,
const std::vector<Point>& pts, ImagePtr bimage ) {
…}
159 template <
typename ImagePtr >
162 run( std::vector<int> & to_update,
163 const KSpace& aK,
const std::vector<Point>& pts, ImagePtr bimage )
167 auto&
image = *bimage;
168 std::map< Point, int > computed;
174 if ( i % 100 == 0 )
trace.progressBar( i, nb );
175 auto it = computed.find( p );
176 if ( it == computed.end() )
179 bool cvx = ( to_update[ i ] & 0x1 )
182 bool ccvx = ( to_update[ i ] & 0x2 )
185 geom = ( cvx ? 0x1 : 0x0 ) | ( ccvx ? 0x2 : 0x0 );
186 computed[ p ] = geom;
188 else geom = it->second;
189 to_update[ i++ ] = geom;
162 run( std::vector<int> & to_update, {
…}
194template <
typename KSpace,
int N >
200 template <
typename ImagePtr >
202 std::vector< Geometry >
204 const std::vector<Point>& pts,
209 trace.info() <<
"------- Analyzing scale " << N <<
" --------" << std::endl;
210 std::vector< int > geom( prev_geometry.size() );
211 for (
int i = 0; i < geom.size(); i++ )
212 geom[ i ] = ( prev_geometry[ i ].first == N-1 ? 0x1 : 0x0 )
213 | ( prev_geometry[ i ].second == N-1 ? 0x2 : 0x0 );
215 for (
int i = 0; i < geom.size(); i++ ) {
216 prev_geometry[ i ].first += ( geom[ i ] & 0x1 ) ? 1 : 0;
217 prev_geometry[ i ].second += ( geom[ i ] & 0x2 ) ? 1 : 0;
219 return prev_geometry;
224template <
typename KSpace>
229 template <
typename ImagePtr >
231 std::vector< Geometry >
233 const std::vector<Point>& pts,
238 return std::vector< Geometry >( pts.size(), std::make_pair( 0, 0 ) );
242int main(
int argc,
char** argv )
246 trace.info() <<
"Usage: " << argv[ 0 ] <<
" <K> <input.vol> <m> <M>" << std::endl;
247 trace.info() <<
"\tAnalyze the shape with local full convexity" << std::endl;
248 trace.info() <<
"\t- 1 <= K <= 5: analysis at scale K" << std::endl;
249 trace.info() <<
"\t- K == 0: multiscale analysis (using scales 1-5)" << std::endl;
250 trace.info() <<
"\t- input.vol: choose your favorite shape" << std::endl;
251 trace.info() <<
"\t- m [==0], M [==255]: used to threshold input vol image" << std::endl;
254 int N = atoi( argv[ 1 ] );
255 std::string fn= argv[ 2 ];
256 int m = argc > 3 ? atoi( argv[ 3 ] ) : 0;
257 int M = argc > 4 ? atoi( argv[ 4 ] ) : 255;
262 trace.info() <<
"Building set or importing vol ... ";
264 params(
"thresholdMin", m );
265 params(
"thresholdMax", M );
268 trace.info() <<
" [Done]" << std::endl;
270 params(
"surfaceComponents" ,
"All" );
275 std::vector< Point > points;
276 std::map< SCell, int > surfel2idx;
277 std::map< Point, int > point2idx;
283 auto voxel =
K.sIncident( s, k,
K.sDirect( s, k ) );
284 Point p =
K.sCoords( voxel );
285 auto it = point2idx.find( p );
286 if ( it == point2idx.end() )
288 points.push_back( p );
289 surfel2idx[ s ] = idx;
290 point2idx [ p ] = idx++;
293 surfel2idx[ s ] = it->second;
295 trace.info() <<
"Shape has " << points.size() <<
" interior boundary points"
299 std::vector< int > result;
300 trace.beginBlock (
"Single scale analysis" );
309 {
Color( 255, 0, 0, 255 ),
Color( 0, 255, 0, 255 ),
310 Color( 0, 0, 255, 255 ),
Color( 255, 255, 255, 255 ) };
313 for (
int i = 0; i < surfels.size(); i++ )
315 const auto j = surfel2idx[ surfels[ i ] ];
316 all_colors[ i ] = colors[ result[ j ] ];
323 viewer << all_colors[ i ]
331 trace.beginBlock (
"Multiscale analysis" );
335 Color colors_planar[ 6 ] =
336 {
Color( 0, 255, 255, 255),
337 Color( 50, 255, 255, 255),
Color( 100, 255, 255, 255),
338 Color( 150, 255, 255, 255),
Color( 200, 255, 255, 255 ),
339 Color( 255, 255, 255, 255 ) };
340 Color color_atypical( 255, 0, 0, 255 );
341 Color colors_cvx[ 5 ] =
342 {
Color( 0, 255, 0, 255 ),
Color( 50, 255, 50, 255 ),
343 Color( 100, 255, 100, 255 ),
Color( 150, 255, 150, 255 ),
344 Color( 200, 255, 200, 255 ) };
345 Color colors_ccv[ 5 ] =
346 {
Color( 0, 0, 255, 255 ),
Color( 50, 50, 255, 255 ),
347 Color( 100, 100, 255, 255 ),
Color( 150, 150, 255, 255 ),
348 Color( 200, 200, 255, 255 ) };
351 for (
int i = 0; i < surfels.size(); i++ ) {
352 const auto j = surfel2idx[ surfels[ i ] ];
353 int m0 = std::min( geometry[ j ].first, geometry[ j ].second );
354 int m1 = std::max( geometry[ j ].first, geometry[ j ].second );
355 if ( m1 == 0 ) all_colors[ i ] = color_atypical;
356 else if ( m0 == m1 ) all_colors[ i ] = colors_planar[ 5 ];
357 else if ( geometry[ j ].first > geometry[ j ].second )
358 all_colors[ i ] = colors_cvx[ 5 - abs( m0 - m1 ) ];
360 all_colors[ i ] = colors_ccv[ 5 - abs( m0 - m1 ) ];
368 viewer << all_colors[ i ]
242int main(
int argc,
char** argv ) {
…}
Structure representing an RGB triple with alpha component.
const Point & lowerBound() const
Return the lower bound for digital points in this space.
PointVector< dim, Integer > Point
const Point & upperBound() const
Return the upper bound for digital points in this space.
static const constexpr Dimension dimension
bool isComplementaryFullyConvex(bool with_center)
static Configuration makeConfiguration(Configuration current, bool complement, bool with_center)
bool isFullyConvex(bool with_center)
void setCenter(Point c, const PointPredicate &X)
void getLocalCompX(std::vector< Point > &localCompX, bool with_center) const
Configuration configuration() const
void show() override
Starts the event loop and display of elements.
static KSpace getKSpace(const Point &low, const Point &up, Parameters params=parametersKSpace())
std::vector< Color > Colors
static SurfelRange getSurfelRange(CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > surface, const Parameters ¶ms=parametersDigitalSurface())
static CountedPtr< DigitalSurface > makeDigitalSurface(CountedPtr< TPointPredicate > bimage, const KSpace &K, const Parameters ¶ms=parametersDigitalSurface())
std::vector< RealVector > RealVectors
static Parameters defaultParameters()
static bool saveOBJ(CountedPtr< ::DGtal::DigitalSurface< TDigitalSurfaceContainer > > digsurf, const TCellEmbedder &embedder, const RealVectors &normals, const Colors &diffuse_colors, std::string objfile, const Color &ambient_color=Color(32, 32, 32), const Color &diffuse_color=Color(200, 200, 255), const Color &specular_color=Color::White)
static CountedPtr< BinaryImage > makeBinaryImage(Domain shapeDomain)
CountedPtr< SH3::DigitalSurface > surface
Z3i this namespace gathers the standard of types for 3D imagery.
KhalimskySpaceND< 3, Integer > KSpace
DGtal is the top-level namespace which contains all DGtal functions and types.
DGtal::uint32_t Dimension
static std::vector< Point > debug_one(const KSpace &aK, Point p, ImagePtr bimage)
NeighborhoodConvexityAnalyzer< KSpace, N > NCA
static void run(std::vector< int > &to_update, const KSpace &aK, const std::vector< Point > &pts, ImagePtr bimage)
static std::vector< int > run(const KSpace &aK, const std::vector< Point > &pts, ImagePtr bimage)
std::pair< int, int > Geometry
static std::vector< Geometry > multiscale_run(const KSpace &aK, const std::vector< Point > &pts, ImagePtr bimage)
NeighborhoodConvexityAnalyzer< KSpace, N > NCA
static std::vector< Geometry > multiscale_run(const KSpace &aK, const std::vector< Point > &pts, ImagePtr bimage)
std::pair< int, int > Geometry