DGtal 1.4.0
Loading...
Searching...
No Matches
Shortcuts (for the impatient developper)
Author(s) of this documentation:
Jacques-Olivier Lachaud
Since
1.0

Part of the Tutorials.

This part of the manual describes how to use shortcuts to quickly create shapes and surfaces, to traverse surfaces, to save/load images and shapes, and to analyze their geometry.

The following programs are related to this documentation: shortcuts.cpp, shortcuts-geometry.cpp

Note
All rendering are made with Blender.
See also
Integral invariant curvature estimator 2D/3D for Integral Invariant estimators.
Digital Voronoi Covariance Measure and geometry estimation for Voronoi Covariance Measure estimators.

Introduction

To use shortcuts, you must include the following header:

#include "DGtal/helpers/Shortcuts.h"

And choose an appropriate Khalimsky space according to the dimension of the object you will be processing.

See also
moduleCellularTopology
// Using standard 2D digital space.
typedef Shortcuts<Z2i::KSpace> SH2;
// Using standard 3D digital space.
typedef Shortcuts<Z3i::KSpace> SH3;
Shortcuts< KSpace > SH2
Shortcuts< KSpace > SH3

The general philosophy of the shorcut module is to choose reasonnable data structures in order to minimize the number of lines to build frequent digital geometry code. For instance, the following lines build a shape that represents the digitization of an ellipsoid.

auto params = SH3::defaultParameters();
// Set your own parameters with operator().
params( "polynomial", "3*x^2+2*y^2+z^2-90" )( "gridstep", 0.25 );
auto implicit_shape = SH3::makeImplicitShape3D( params );
auto kspace = SH3::getKSpace( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
std::cout << *digitized_shape << std::endl;
static KSpace getKSpace(const Point &low, const Point &up, Parameters params=parametersKSpace())
Definition Shortcuts.h:332
static CountedPtr< DigitizedImplicitShape3D > makeDigitizedImplicitShape3D(CountedPtr< ImplicitShape3D > shape, Parameters params=parametersDigitizedImplicitShape3D())
Definition Shortcuts.h:523
static Parameters defaultParameters()
Definition Shortcuts.h:203
static CountedPtr< ImplicitShape3D > makeImplicitShape3D(const Parameters &params=parametersImplicitShape3D())
Definition Shortcuts.h:282

As one can see, a Parameters object stores parameter values and can be simply updated by the user with the function operator().

Note
Big objects (like images, explicit shapes, explicit surfaces) are always returned or passed as smart pointers (with CountedPtr). Smaller objects (like vectors of scalars, etc) are efficiently passed by value. Hence you never have to take care of their lifetime and you do not need to delete them explicitly.

Short 3D examples

We give below some minimalistic examples to show that shortcuts can save a lot of lines of code. All examples need at least the following lines:

#include "DGtal/helpers/StdDefs.h"
#include "DGtal/helpers/Shortcuts.h"
...
// Using standard 3D digital space.
typedef Shortcuts<Z3i::KSpace> SH3;
auto params = SH3::defaultParameters();

Examples requiring geometric functions (ground-truth or estimation) need the following lines (i.e. functions in SHG3):

#include "DGtal/helpers/StdDefs.h"
#include "DGtal/helpers/Shortcuts.h"
#include "DGtal/helpers/ShortcutsGeometry.h"
...
// Using standard 3D digital space.
typedef Shortcuts<Z3i::KSpace> SH3;
typedef ShortcutsGeometry<Z3i::KSpace> SHG3;
auto params = SH3::defaultParameters()
static Parameters defaultParameters()
ShortcutsGeometry< Z3i::KSpace > SHG3

Load vol file -> ...

-> noisify -> save as vol file.

// load and noisify image directly.
auto al_capone = SH3::makeBinaryImage( examplesPath + "samples/Al.100.vol",
params( "noise", 0.3 ) );
auto ok = SH3::saveBinaryImage( al_capone, "noisy-Al.vol" );

-> build main connected digital surface

auto al_capone = SH3::makeBinaryImage( examplesPath + "samples/Al.100.vol", params );
auto K = SH3::getKSpace( al_capone );
auto surface = SH3::makeLightDigitalSurface( al_capone, K, params );
trace.info() << "#surfels=" << surface->size() << std::endl;

-> extract 2 isosurfaces -> build mesh -> displays them

The following code extracts iso-surfaces (maybe multiple connected components) in the given gray-scale 3D image and builds meshes, which can be displayed.

Note
Iso-surfaces are built by duality from digital surfaces. The output triangulated surfaces share similarities with marching-cubes surfaces, but they are guaranteed to be 2-manifold (closed if the surface does not touch the boundary of the domain).
params( "faceSubdivision", "Centroid" )( "surfelAdjacency", 1);
auto gimage = SH3::makeGrayScaleImage( examplesPath + "samples/lobster.vol" );
auto trisurf150= SH3::makeTriangulatedSurface( gimage, params( "thresholdMin", 150 ) );
auto trisurf40 = SH3::makeTriangulatedSurface( gimage, params( "thresholdMin", 40 ) );
auto mesh150 = SH3::makeMesh( trisurf150 );
auto mesh40 = SH3::makeMesh( trisurf40 );
trace.info() << "#mesh150=" << mesh150->nbVertex()
<< " #mesh40=" << mesh40->nbVertex() << std::endl;

If you wish to display them with two different colors, you may write:

QApplication application(argc,argv);
Viewer3D<> viewer;
viewer.show();
viewer << CustomColors3D( Color::Black, Color::Red ) << *mesh40;
viewer << CustomColors3D( Color::Black, Color::Blue ) << *mesh200;
viewer << Viewer3D<>::updateDisplay;
application.exec();
static const Color Red
Definition Color.h:416
static const Color Blue
Definition Color.h:419
static const Color Black
Definition Color.h:413

-> extract 2 triangulated isosurfaces -> save as OBJ

The following code extracts all iso-surfaces in the given gray-scale 3D image and saves them as OBJ file with color information.

params( "faceSubdivision", "Centroid" )( "surfelAdjacency", 1);
auto gimage = SH3::makeGrayScaleImage( examplesPath + "samples/lobster.vol" );
auto trisurf150= SH3::makeTriangulatedSurface( gimage, params( "thresholdMin", 150 ) );
auto trisurf40 = SH3::makeTriangulatedSurface( gimage, params( "thresholdMin", 40 ) );
auto ok40 = SH3::saveOBJ( trisurf40, SH3::RealVectors(), SH3::Colors(),
"lobster-40.obj", // semi-transparent red diffuse color
SH3::Color( 30,30,30 ), SH3::Color( 255,0,0,100 ) );
auto ok150 = SH3::saveOBJ( trisurf150, SH3::RealVectors(), SH3::Colors(),
"lobster-150.obj", // opaque blue diffuse color
SH3::Color( 30,30,30 ), SH3::Color( 0,0,255,255 ) );
Rendering of lobster 40 (red semi-transparent) and 150 (blue) isosurfaces.

-> build main digital surface -> breadth first traversal -> save OBJ with colored distance.

You may choose your traversal order ("Default", "DepthFirst", "BreadthFirst").

params( "surfaceTraversal", "BreadthFirst" ) // specifies breadth-first traversal
( "colormap", "Jet" ); // specifies the colormap
auto al_capone = SH3::makeBinaryImage( examplesPath + "samples/Al.100.vol", params );
auto K = SH3::getKSpace( al_capone );
auto surface = SH3::makeLightDigitalSurface( al_capone, K, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto cmap = SH3::getColorMap( 0, surfels.size(), params );
SH3::Colors colors( surfels.size() );
for ( unsigned int i = 0; i < surfels.size(); ++i ) colors[ i ] = cmap( i );
bool ok = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "al-primal-bft.obj" );
Rendering of Al Capone with a breadth-first traversal colored according to distance (blue to red).

-> build digital surface -> estimate curvatures -> save OBJ.

This example requires ShortcutsGeometry. It shows how tu use the integral invariant curvature estimator on a digital shape model to estimate its mean or Gaussian curvature.

params( "colormap", "Tics" );
auto bimage = SH3::makeBinaryImage( examplesPath + "samples/Al.100.vol", params );
auto K = SH3::getKSpace( bimage, params );
auto surface = SH3::makeDigitalSurface( bimage, K, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto curv = SHG3::getIIMeanCurvatures( bimage, surfels, params );
// To get Gauss curvatures, write instead:
// auto curv = SHG3::getIIGaussianCurvatures( bimage, surfels, params );
auto cmap = SH3::getColorMap( -0.5, 0.5, params );
auto colors = SH3::Colors( surfels.size() );
std::transform( curv.cbegin(), curv.cend(), colors.begin(), cmap );
bool ok = SH3::saveOBJ( surface, SH3::RealVectors(), colors,
"al-H-II.obj" );
Rendering of Al Capone with estimated mean curvatures (blue is negative, white zero, red is positive, scale is [-0.5, 0.5]).
Rendering of Al Capone with estimated Gaus curvatures (blue is negative, white zero, red is positive, scale is [-0.25, 0.25]).

Build polynomial shape -> digitize -> ...

-> noisify -> save as vol file.

params( "polynomial", "3*x^2+2*y^2+z^2-90" )( "gridstep", 0.25 )
( "noise", 0.3 );
auto implicit_shape = SH3::makeImplicitShape3D( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto noisy_shape = SH3::makeBinaryImage ( digitized_shape, params );
auto ok = SH3::saveBinaryImage ( noisy_shape, "noisy-ellipsoid.vol" );

-> build surface -> save primal surface as obj

Note
The OBJ file is generally not a combinatorial 2-manifold, since digital surfaces, seen as squares stitched together, are manifold only when they are well-composed.
params( "polynomial", "goursat" )( "gridstep", 0.25 );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto K = SH3::getKSpace( params );
auto binary_image = SH3::makeBinaryImage( digitized_shape, params );
bool ok = SH3::saveOBJ( surface, "goursat-primal.obj" );
Rendering of goursat-primal.obj.

-> build indexed surface on a subpart

You may choose which part of a domain is digitized as a binary image, here the first orthant is chosen.

params( "polynomial", "leopold" )( "gridstep", 0.25 )
( "minAABB", -12.0 )( "maxAABB", 12.0 )
( "surfaceComponents", "All" );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto Kwhole = SH3::getKSpace( params );
auto K = SH3::getKSpace( SH3::Point::zero, Kwhole.upperBound(), params );
auto binary_image = SH3::makeBinaryImage( digitized_shape,
SH3::Domain(K.lowerBound(),K.upperBound()),
params );
trace.info() << "#surfels=" << surface->size() << std::endl;

-> noisify -> count components -> save OBJ with different colors.

params( "polynomial", "leopold" )( "gridstep", 0.25 )
( "minAABB", -12.0 )( "maxAABB", 12.0 )
( "surfaceComponents", "All" )( "noise", 0.5 );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto K = SH3::getKSpace( params );
auto binary_image = SH3::makeBinaryImage(digitized_shape,
SH3::Domain(K.lowerBound(),K.upperBound()),
params );
// Extracts the whole surface (with all components)
// Extracts a vector of connected surfaces.
auto vec_surfs = SH3::makeLightDigitalSurfaces( binary_image, K, params );
trace.info() << "#connected components = " << vec_surfs.size() << std::endl;
std::map< SH3::Surfel, unsigned int> label;
unsigned int n = 0;
for ( auto&& surf : vec_surfs ) {
auto surfels = SH3::getSurfelRange( surf, params );
for ( auto&& s : surfels ) label[ s ] = n;
n += 1;
}
auto cmap = SH3::getColorMap( 0, vec_surfs.size(), params );
auto all_surfels = SH3::getSurfelRange( surface, params );
SH3::Colors colors( all_surfels.size() );
for ( unsigned int i = 0; i < all_surfels.size(); ++i )
colors[ i ] = cmap( label[ all_surfels[ i ] ] );
bool ok = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "leopold-primal-cc.obj" );
Rendering of leopold-primal-cc.obj.

-> extract ground-truth geometry

This example requires ShortcutsGeometry. It shows you how to recover ground-truth positions, normal vectors, mean and Gaussian curvatures onto an implicit 3D shape. For each surfel, the geometry is the one of the point nearest to the given surfel centroid.

params( "polynomial", "3*x^2+2*y^2+z^2-90" )( "gridstep", 0.25 );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto binary_image = SH3::makeBinaryImage ( digitized_shape, params );
auto K = SH3::getKSpace( params );
auto surfels = SH3::getSurfelRange( surface, params );
auto positions = SHG3::getPositions( implicit_shape, K, surfels, params );
auto normals = SHG3::getNormalVectors( implicit_shape, K, surfels, params );
auto mean_curvs = SHG3::getMeanCurvatures( implicit_shape, K, surfels, params );
auto gauss_curvs = SHG3::getGaussianCurvatures( implicit_shape, K, surfels, params );

-> get pointels -> save projected quadrangulated surface.

This example requires ShortcutsGeometry. It shows you how to get pointels from a digital surface and how to project the digital surface onto the given implicit shape.

const double h = 0.25;
params( "polynomial", "goursat" )( "gridstep", h );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto binary_image = SH3::makeBinaryImage ( digitized_shape, params );
auto K = SH3::getKSpace( params );
auto embedder = SH3::getCellEmbedder( K );
auto pointels = SH3::getPointelRange( c2i, surface );
SH3::RealPoints pos( pointels.size() );
std::transform( pointels.cbegin(), pointels.cend(), pos.begin(),
[&] (const SH3::Cell& c) { return h * embedder( c ); } );
auto ppos = SHG3::getPositions( implicit_shape, pos, params );
bool ok = SH3::saveOBJ( surface,
[&] (const SH3::Cell& c){ return ppos[ c2i[ c ] ];},
"goursat-quad-proj.obj" );
Rendering of goursat-quad-proj.obj with quad edges in blue.

-> extract mean curvature -> save as OBJ with colors

This example requires ShortcutsGeometry. The ground-truth mean curvature is just displayed as a color, using the specified colormap.

params( "polynomial", "goursat" )( "gridstep", 0.25 )( "colormap", "Tics" );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto binary_image = SH3::makeBinaryImage ( digitized_shape, params );
auto K = SH3::getKSpace( params );
auto surfels = SH3::getSurfelRange( surface, params );
auto mean_curv = SHG3::getMeanCurvatures( implicit_shape, K, surfels, params );
auto cmap = SH3::getColorMap( -0.3, 0.3, params );
auto colors = SH3::Colors( surfels.size() );
std::transform( mean_curv.cbegin(), mean_curv.cend(), colors.begin(), cmap );
bool ok = SH3::saveOBJ( surface, SH3::RealVectors(), colors,
"goursat-H.obj" );
Rendering of goursat-H.obj

-> extract ground-truth and estimated mean curvature -> display errors in OBJ with colors

This example requires ShortcutsGeometry. Both ground-truth and estimated mean curvature are computed. Then you have functions like ShortcutsGeometry::getScalarsAbsoluteDifference and ShortcutsGeometry::getStatistic to measure errors or ShortcutsGeometry::getVectorsAngleDeviation to compare vectors.

params( "polynomial", "goursat" )( "gridstep", 0.25 )( "colormap", "Tics" )
( "R-radius", 5.0 );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto bimage = SH3::makeBinaryImage ( digitized_shape, params );
auto K = SH3::getKSpace( params );
auto surface = SH3::makeLightDigitalSurface( bimage, K, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto t_curv = SHG3::getMeanCurvatures( implicit_shape, K, surfels, params );
auto ii_curv = SHG3::getIIMeanCurvatures( bimage, surfels, params );
auto cmap = SH3::getColorMap( -0.5, 0.5, params );
auto colors = SH3::Colors( surfels.size() );
std::transform( t_curv.cbegin(), t_curv.cend(), colors.begin(), cmap );
bool ok_t = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-H.obj" );
std::transform( ii_curv.cbegin(), ii_curv.cend(), colors.begin(), cmap );
bool ok_ii = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-H-ii.obj" );
auto errors = SHG3::getScalarsAbsoluteDifference( t_curv, ii_curv );
auto stat_errors = SHG3::getStatistic( errors );
auto cmap_errors = SH3::getColorMap( 0.0, stat_errors.max(), params );
std::transform( errors.cbegin(), errors.cend(), colors.begin(), cmap_errors );
bool ok_err = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-H-ii-err.obj" );
trace.info() << "Error Loo=" << SHG3::getScalarsNormLoo( t_curv, ii_curv )
<< " L1=" << SHG3::getScalarsNormL1 ( t_curv, ii_curv )
<< " L2=" << SHG3::getScalarsNormL2 ( t_curv, ii_curv )
<< std::endl;
Ground truth mean curvature
Estimated II mean curvature
Highlight estimation errors (blue small, red high)

-> build surface -> save primal surface with vcm normals as obj

This example requires ShortcutsGeometry.

Note
The OBJ file is generally not a combinatorial 2-manifold, since digital surfaces, seen as squares stitched together, are manifold only when they are well-composed.
params( "polynomial", "goursat" )( "gridstep", 0.25 )
( "surfaceTraversal", "Default" );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto K = SH3::getKSpace( params );
auto binary_image = SH3::makeBinaryImage( digitized_shape, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto vcm_normals = SHG3::getVCMNormalVectors( surface, surfels, params );
bool ok = SH3::saveOBJ( surface, vcm_normals, SH3::Colors(),
"goursat-primal-vcm.obj" );
Rendering of goursat-primal.obj (no normals).
Rendering of goursat-primal-vcm.obj (normals estimated by VCM). Note that staircases effects are still very visible, although normals are good.

-> digitize implicitly -> estimate II normals and curvature.

This example requires ShortcutsGeometry. You may also analyze the geometry of a digital implicitly defined surface without generating a binary image and only traverse the surface.

params( "polynomial", "goursat" )( "gridstep", .25 );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto dig_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto K = SH3::getKSpace ( params );
auto surface = SH3::makeDigitalSurface ( dig_shape, K, params );
auto surfels = SH3::getSurfelRange ( surface, params( "surfaceTraversal", "DepthFirst" ) );
auto def_surfels = SH3::getSurfelRange ( surface, params( "surfaceTraversal", "Default" ) );
auto ii_normals = SHG3::getIINormalVectors ( dig_shape, surfels, params );
trace.beginBlock( "II with default traversal (slower)" );
auto ii_mean_curv = SHG3::getIIMeanCurvatures ( dig_shape, def_surfels, params );
trace.beginBlock( "II with depth-first traversal (faster)" );
auto ii_mean_curv2 = SHG3::getIIMeanCurvatures ( dig_shape, surfels, params );
auto cmap = SH3::getColorMap ( -0.5, 0.5, params );
auto colors = SH3::Colors ( def_surfels.size() );
auto match = SH3::getRangeMatch ( def_surfels, surfels );
auto normals = SH3::getMatchedRange ( ii_normals, match );
for ( SH3::Idx i = 0; i < colors.size(); i++ )
colors[ i ] = cmap( ii_mean_curv[ match[ i ] ] );
bool ok_H = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-imp-H-ii.obj" );
Rendering of goursat-imp-H-ii.obj with a gridstep of 0.03125, more than 2e6 surfels.

-> digitize -> save primal surface and VCM normal field as obj

This example requires ShortcutsGeometry. You may estimate the normals to a surface by the VCM normal estimator.

params( "polynomial", "goursat" )( "gridstep", 0.5 )
( "surfaceTraversal", "Default" );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto K = SH3::getKSpace( params );
auto binary_image = SH3::makeBinaryImage( digitized_shape, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto vcm_normals = SHG3::getVCMNormalVectors( surface, surfels, params );
auto embedder = SH3::getSCellEmbedder( K );
SH3::RealPoints positions( surfels.size() );
std::transform( surfels.cbegin(), surfels.cend(), positions.begin(),
[&] (const SH3::SCell& c) { return embedder( c ); } );
bool ok = SH3::saveOBJ( surface, vcm_normals, SH3::Colors(),
"goursat-primal-vcm.obj" );
bool ok2 = SH3::saveVectorFieldOBJ( positions, vcm_normals, 0.05, SH3::Colors(),
"goursat-primal-vcm-normals.obj",
SH3::Color( 0, 0, 0 ), SH3::Color::Red );

-> digitize -> II normals -> AT piecewise-smooth approximation

This example requires ShortcutsGeometry. You may also use the Ambrosio-Tortorelli functional to get a piecewise smooth approximation of an arbitrary scalar or vector field over a surface. Here we use it to get a piecewise smooth approximation of the II normals.

auto al_capone = SH3::makeBinaryImage( examplesPath + "samples/Al.100.vol", params );
auto K = SH3::getKSpace( al_capone );
auto surface = SH3::makeLightDigitalSurface( al_capone, K, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto ii_normals = SHG3::getIINormalVectors( al_capone, surfels, params );
auto linels = SH3::getCellRange( surface, 1 );
auto uembedder = SH3::getCellEmbedder( K );
SH3::Scalars features( linels.size() );
auto at_normals = SHG3::getATVectorFieldApproximation( features, linels.cbegin(), linels.cend(),
surface, surfels,
ii_normals, params );
// Output normals as colors depending on directions
SH3::Colors colors( surfels.size() );
for ( size_t i = 0; i < surfels.size(); i++ )
colors[ i ] = SH3::Color( (unsigned char) 255.0*fabs( at_normals[ i ][ 0 ] ),
(unsigned char) 255.0*fabs( at_normals[ i ][ 1 ] ),
(unsigned char) 255.0*fabs( at_normals[ i ][ 2 ] ) );
bool ok1 = SH3::saveOBJ( surface, SH3::RealVectors(), SH3::Colors(), "al-surface.obj" );
bool ok2 = SH3::saveOBJ( surface, at_normals, colors, "al-colored-at-normals.obj" );
// Output discontinuities as sticks on linels.
for ( size_t i = 0; i < linels.size(); i++ )
{
if ( features[ i ] < 0.5 )
{
const SH3::Cell linel = linels[ i ];
const Dimension d = * K.uDirs( linel );
const SH3::Cell p0 = K.uIncident( linel, d, false );
const SH3::Cell p1 = K.uIncident( linel, d, true );
f0.push_back( uembedder( p0 ) );
f1.push_back( uembedder( p1 ) - uembedder( p0 ) );
}
}
bool ok3 = SH3::saveVectorFieldOBJ( f0, f1, 0.1, SH3::Colors(),
"al-features.obj",
SH3::Color( 0, 0, 0 ), SH3::Color::Red );
Piecewise-smooth normals displayed as colors on Al-150 dataset.
Discontinuities of the piecewise-smooth normal vector field on Al-150 dataset.

-> digitize -> True principal curvatures

This example requires ShortcutsGeometry. You can easily get the expected principal curvatures and principal directions onto a digitized implicit shape.

params( "polynomial", "goursat" )( "gridstep", 0.25 )( "colormap", "Tics" );
auto implicit_shape = SH3::makeImplicitShape3D ( params );
auto digitized_shape = SH3::makeDigitizedImplicitShape3D( implicit_shape, params );
auto bimage = SH3::makeBinaryImage ( digitized_shape, params );
auto K = SH3::getKSpace( params );
auto surface = SH3::makeLightDigitalSurface( bimage, K, params );
auto surfels = SH3::getSurfelRange( surface, params );
auto k1 = SHG3::getFirstPrincipalCurvatures( implicit_shape, K, surfels, params );
auto k2 = SHG3::getSecondPrincipalCurvatures( implicit_shape, K, surfels, params );
auto d1 = SHG3::getFirstPrincipalDirections( implicit_shape, K, surfels, params );
auto d2 = SHG3::getSecondPrincipalDirections( implicit_shape, K, surfels, params );
auto embedder = SH3::getSCellEmbedder( K );
SH3::RealPoints positions( surfels.size() );
std::transform( surfels.cbegin(), surfels.cend(), positions.begin(),
[&] (const SH3::SCell& c) { return embedder( c ); } );
"goursat-primal.obj" );
// output principal curvatures and directions
auto cmap = SH3::getColorMap( -0.5, 0.5, params );
auto colors= SH3::Colors( surfels.size() );
std::transform( k1.cbegin(), k1.cend(), colors.begin(), cmap );
bool ok_k1 = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-primal-k1.obj" );
bool ok_d1 = SH3::saveVectorFieldOBJ( positions, d1, 0.05, colors,
"goursat-primal-d1.obj", SH3::Color::Black );
std::transform( k2.cbegin(), k2.cend(), colors.begin(), cmap );
bool ok_k2 = SH3::saveOBJ( surface, SH3::RealVectors(), colors, "goursat-primal-k2.obj" );
bool ok_d2 = SH3::saveVectorFieldOBJ( positions, d2, 0.05, colors,
"goursat-primal-d2.obj", SH3::Color::Black );
ASSERT(ok_k1 && ok_d1 && ok_k2 && ok_d2);
Principal directions of curvatures colored according to their value (blue negative, red positive) on a torus.
Principal directions of curvatures colored according to their value (blue negative, red positive) on goursat shape.

Few 2D examples

We give below some minimalistic examples to show that shortcuts can save a lot of lines of code. All examples need at least the following lines:

#include "DGtal/helpers/StdDefs.h"
#include "DGtal/helpers/Shortcuts.h"
...
// Using standard 2D digital space.
typedef Shortcuts<Z2i::KSpace> SH2;
auto params = SH2::defaultParameters();

Load pgm file -> ...

-> threshold -> save pgm

auto g_image = SH2::makeGrayScaleImage( examplesPath + "samples/contourS.pgm" );
auto b_image = SH2::makeBinaryImage ( g_image, params( "thresholdMin", 128 ) );
auto ok = SH2::saveBinaryImage ( b_image, "contourS-128.pgm" );
static CountedPtr< GrayScaleImage > makeGrayScaleImage(Domain aDomain)
Definition Shortcuts.h:736
static bool saveBinaryImage(CountedPtr< BinaryImage > bimage, std::string output)
Definition Shortcuts.h:708
static CountedPtr< BinaryImage > makeBinaryImage(Domain shapeDomain)
Definition Shortcuts.h:561

Philosophy and naming conventions

Commands are constructed as prefix + type name. Most of them are static methods and are overloaded to accept different set of parameters.

Prefixes

  • make + Type: means that it will create a new object of type Type and returns it as a smart pointer onto it. Depending on parameters, make can load a file, copy and transform an object, build an empty/not object according to parameters.
  • make + Type + s: means that it will create new objects of type Type and returns them as a vector of smart pointers onto it.
  • make + Spec + Type: means that it will create a new object of type Type with some specialized meaning according to Spec and returns it as a smart pointer onto it.
  • save + Type: means that it will save the pointed object of type Type as a file.
  • parameters + Type: returns the Parameters object associated to the operations related to the given Type.
  • get + Type: means that it will return by value an object of type Type.

Types

The following name conventions for types are used. They are defined according to your choice of cellular grid space when defining the Shortcuts type. For instance, if Z3i::KSpace was chosen, then Shortcuts::Point is Z3i::KSpace::Point.

Main methods

  1. General methods
  2. ImplicitShape3D methods
  3. KSpace methods
  4. DigitizedImplicitShape3D methods
  5. BinaryImage methods
  6. GrayScaleImage methods
  7. FloatImage methods
  8. DoubleImage methods
  9. DigitalSurface methods
    • Shortcuts::parametersDigitalSurface: parameters related to digital surfaces (surfel adjacency, components, internal heuristics)
    • Shortcuts::getCellEmbedder: returns the canonic cell embedder of the given (indexed or not) digital surface
    • Shortcuts::getSCellEmbedder: returns the canonic signed cell embedder of the given (indexed or not) digital surface.
    • Shortcuts::makeLightDigitalSurface: creates a light connected surface around a (random) big enough component of a binary image
    • Shortcuts::makeLightDigitalSurfaces: creates the vector of all light digital surfaces of the binary image or any one of its big components, can also output representant surfels
    • Shortcuts::makeDigitalSurface: creates an arbitrary (connected or not) digital surface from a binary image, from a digitized implicit shape or from an indexed digital surface.
    • Shortcuts::makeIdxDigitalSurface: creates an indexed digital surfaces that represents all the boundaries of a binary image or any one of its big components, or any given collection of surfels, or from light digital surface(s).
    • Shortcuts::getSurfelRange: returns the surfels of a digital surface in the specified traversal order.
    • Shortcuts::getCellRange: returns the k-dimensional cells of a digital surface in a the default traversal order (be careful, when it is not surfels, the order corresponds to the surfel order, and then to the incident cells).
    • Shortcuts::getIdxSurfelRange: returns the indexed surfels of an indexed digital surface in the specified traversal order.
    • Shortcuts::getPointelRange: returns the pointels of a digital surface in the default order and optionnaly the map Pointel -> Index giving the indices of each pointel, or simply the pointels around a surfel.
    • Shortcuts::saveOBJ: several overloaded functions that save geometric elements as an OBJ file. You may save a digital surface as an OBJ file, with optionally positions, normals and colors information
  10. RealVectors methods
  11. Mesh services
  12. Utilities
  13. ShapeGeometry services
  14. GeometryEstimation services
  15. ATApproximation services

Parameters

In all methods, out parameters are listed before in parameters. Also, methods whose result can be influenced by global parameters are parameterized through a Parameters object. Hence static methods follow this pattern:

<return-type> Shortcuts::fonction-name ( [ <out-parameter(s)> ], [ <in-parameter(s)> ], [ Parameters params ] )

The simplest way to get default values for global parameters is to start with a line:

And then to change your parameter settings with Parameters::operator(), for instance:

params( "gridstep", 0.1 )( "closed", 1 );

You also have the bitwise-or (operator|) to merge Parameters.