44{
49
52
53 using TriOr = MeshVoxelizer6::TriangleOrientation;
54
55
56 SECTION(
"Test distance point/plan 3D")
57 {
58
59 const PointR3 A(38.6908 , 14.5441 , -0.71205);
60 const PointR3 B(34.6171 , 13.5999 , 2.44455);
61 const PointR3 C(37.4205 , 2.44239 , 6.31301);
62
63
64 const PointZ3 v(35, 2, 5);
65
66 const VectorR3 e1 = A - B;
67 const VectorR3 e2 = A - C;
68
69 double distance = MeshVoxelizer6::distance(A, e1.crossProduct(e2), v);
70
73 }
74
75
76 SECTION(
"Test if 2D point is inside triangle 2D")
77 {
78
79 PointR2 A(1.0, 1.0);
80 PointR2 B(2.0, 3.0);
81 PointR2 C(3.0, 1.0);
82
84 OrientationFunctor orientationFunctor;
85
86
88
89 if(! pointPredicate(A, B, C))
90 {
91 std::swap(A, C);
92 }
93
94
95
96
97
98
99 PointR2 v;
100
101 v[0] = 3.0;
102 v[1] = 3.0;
103 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_OUTSIDE);
104
105 v[0] = 2.0;
106 v[1] = 2.0;
107 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_INSIDE);
108
109 v[0] = 2;
110 v[1] = 1;
111 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_ONEDGE);
112
113 v[0] = 3;
114 v[1] = 1;
115 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_ONVERTEX);
116
117
118 A = { 16.3299, 0. };
119 B = { 0., 16.3299 };
120 C = { -16.3299, 0. };
121 v = { -17., 0.};
122 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_OUTSIDE);
123
124
125 A = { -0.891282, 9.91201 };
126 B = { -1.40823, 9.91261 };
127 C = { -1.36963, 9.37414 };
128 v = { -1.16961, 9.83039 };
129 REQUIRE(MeshVoxelizer6::pointIsInside2DTriangle(A, B, C, v) == TriOr::TRIANGLE_INSIDE);
130 }
131
132
133 SECTION(
"Test if 3D point is inside voxel")
134 {
135
136 PointR3 P(-0.89, 9.91, 0.86);
137 PointZ3 v(-1, 10, 1);
138
139 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
true);
140
141 P[0] = -1.41;
142 P[1] = 9.91;
143 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
true);
144
145 P[0] = -1.37;
146 P[1] = 9.37;
147 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
false);
148
149 P[0] = -1.17;
150 P[1] = 9.83;
151 P[2] = 0;
152 REQUIRE(MeshVoxelizer6::pointIsInsideVoxel(P, v) ==
false);
153 }
154
155
156 SECTION(
"26-sep voxelization of a single triangle")
157 {
160 MeshVoxelizer26 voxelizer;
161
162 voxelizer.voxelize(outputSet,
Point(5,0,0),
Point(0,5,0),
Point(0,0,5));
164 for(auto p: outputSet)
165 board << p ;
166 board.
saveOBJ(
"triangle26-dig.obj");
167
168 REQUIRE( outputSet.size() == 46 );
169 }
170
171
172 SECTION(
"6-sep voxelization of a single triangle")
173 {
176 MeshVoxelizer6 voxelizer;
177
178 voxelizer.voxelize(outputSet,
Point(5,0,0),
Point(0,5,0),
Point(0,0,5));
180 for(auto p: outputSet)
181 board << p ;
182 board.
saveOBJ(
"triangle6-dig.obj");
183
184 REQUIRE( outputSet.size() == 21 );
185 }
186
187
188 SECTION(
"6-sep voxelization of a OFF cube mesh")
189 {
190
195 MeshVoxelizer6 voxelizer;
196
198
199 voxelizer.voxelize(outputSet, inputMesh, 10.0 );
201 for(auto p: outputSet)
202 board << p ;
204
206
207 REQUIRE( outputSet.size() == 2562 );
208 }
209
210 SECTION(
"26-sep voxelization of a OFF cube mesh")
211 {
212
217 MeshVoxelizer26 voxelizer;
218
220
221 voxelizer.voxelize(outputSet, inputMesh, 10.0 );
223 for(auto p: outputSet)
224 board << p ;
225 board.
saveOBJ(
"box26-dig.obj");
226
228
229 REQUIRE( outputSet.size() == 4162 );
230 }
231}
The class Board3D is a type of Display3D which export the figures in the format OBJ/MTL when calling ...
void saveOBJ(const std::string &filename, const bool isNormalized=false)
Aim: A wrapper class around a STL associative container for storing sets of digital points within som...
Aim: Class that implements an orientation functor, ie. it provides a way to compute the orientation o...
Aim: A class for computing the digitization of a triangle or a Mesh.
Aim: This class is defined to represent a surface mesh through a set of vertices and faces....
Aim: Implements basic operations that will be used in Point and Vector classes.
Aim: Small adapter to models of COrientationFunctor2. It is a model of concepts::CPointPredicate....
DGtal::LinearOperator< Calculus, dim, duality, dim, duality > diagonal(const DGtal::KForm< Calculus, dim, duality > &kform)
static bool importOFFFile(const std::string &filename, DGtal::Mesh< TPoint > &aMesh, bool invertVertexOrder=false, bool onlyFaceVertex=false)
SECTION("Testing constant forward iterators")
REQUIRE(domain.isInside(aPoint))