Loading [MathJax]/extensions/TeX/AMSsymbols.js
DGtal 2.0.0
ctopo-1s-3d.cpp File Reference
#include <iostream>
#include "DGtal/base/Common.h"
#include "DGtal/helpers/StdDefs.h"
#include "DGtal/io/viewers/PolyscopeViewer.h"
Include dependency graph for ctopo-1s-3d.cpp:

Go to the source code of this file.

Functions

int main (int argc, char **argv)

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Bertrand Kerautret (kerau.nosp@m.tre@.nosp@m.loria.nosp@m..fr ) LORIA (CNRS, UMR 7503), University of Nancy, France
Date
2011/05/13

An example file named ctopo-1-3d.cpp.

This file is part of the DGtal library.

Definition in file ctopo-1s-3d.cpp.

Function Documentation

◆ main()

int main ( int argc,
char ** argv )

Definition at line 55 of file ctopo-1s-3d.cpp.

56{
57 // for 3D display with PolyscopeViewer
58 KSpace K;
59 Point plow(0,0,0);
60 Point pup(3,3,2);
61 Domain domain( plow, pup );
62 K.init( plow, pup, true );
63
65 MyViewer viewer(K);
66
67 SCell ptlow = K.sPointel( plow ); // pointel (0*2,0*2, 0*2)
68 SCell ptup1 = K.sPointel( pup ); // pointel (3*2,3*2, 2*2)
69 SCell ptup2 = K.sTranslation( ptup1, Point::diagonal() ); // pointel (4*2, 4*2, 3*2)
70
71 viewer << ptlow << ptup1 << ptup2;
72
73 // drawing cells of dimension 0
74 SCell p1= K.sCell(Point(0,0,2),false); // pointel (0*2,0*2,2*2)
75 SCell p2= K.sCell(Point(0,2,2)); // ...
76 SCell p3= K.sCell(Point(2,2,2),false);
77 SCell p4= K.sCell(Point(2,0,2));
78 SCell p5= K.sCell(Point(0,0,4),false);
79 SCell p6= K.sCell(Point(0,2,4));
80 SCell p7= K.sCell(Point(2,2,4), false);
81 SCell p8= K.sCell(Point(2,0,4));
82 viewer << p1 << p2 << p3 << p4 << p5 << p6 << p7 << p8;
83
84 // drawing Cells of dimension 1
85 SCell linel0 = K.sCell( Point( 1, 0, 2 ) ); // linel (2*1+1, 0, 2*2)
86 SCell linel1 = K.sCell( Point( 1, 2, 2 ) ); // ...
87 SCell linel2 = K.sCell( Point( 0, 1, 2 ) );
88 SCell linel3 = K.sCell( Point( 2, 1, 2 ) );
89
90 SCell linel4 = K.sCell( Point( 1, 0, 4 ) );
91 SCell linel5 = K.sCell( Point( 1, 2, 4 ) );
92 SCell linel6 = K.sCell( Point( 0, 1, 4 ) );
93 SCell linel7 = K.sCell( Point( 2, 1, 4 ) );
94
95 SCell linel8 = K.sCell( Point( 0, 0, 3 ) );
96 SCell linel9 = K.sCell( Point( 0, 2, 3 ) );
97 SCell linel10 = K.sCell( Point( 2, 0, 3 ) );
98 SCell linel11 = K.sCell( Point( 2, 2, 3 ) );
99
100
101 SCell linel12 = K.sCell( Point( 3, 2, 2 ) );
102
103 viewer << linel0<< linel1<< linel2 << linel3 ;
104 viewer << linel4<< linel5<< linel6 << linel7 ;
105 viewer << linel8<< linel9<< linel10 << linel11 << linel12;
106
107 // drawing cells of dimension 2
108
109 SCell surfelA = K.sCell( Point( 2, 1, 3 ) ); // surfel (2*2,2*1+1,2*3+1)
110 SCell surfelB = K.sCell( Point( 1, 0, 1 ) ); // surfel (2*1,2*0,2*1+1)
111 SCell surfelC = K.sCell( Point( 2, 1, 1 ),false ); // surfel (2*2,2*1+1,2*1+1)
112 viewer << surfelA << surfelB << surfelC;
113
114 // drawing cells of dimension 3
115 SCell vox1 = K.sCell( Point( 3, 3, 3 ) ); // voxel (2*3+1,2*3+1,2*3+1)
116 SCell vox2 = K.sCell( Point( 1, 1, 3 ) ,false ); // voxel (2*1+1,2*1+1,2*3+1)
117 viewer << vox1 << vox2;
118
119 viewer.show();
120 return 0;
121}
static Self diagonal(Component val=1)
KhalimskySpaceND< 3, Integer > KSpace
Definition StdDefs.h:146
Space::Point Point
Definition StdDefs.h:168
KSpace::SCell SCell
Definition StdDefs.h:149
KSpace K
Domain domain
PolyscopeViewer< Space, KSpace > MyViewer

References DGtal::PointVector< dim, Integer >::diagonal(), domain, K, and DGtal::PolyscopeViewer< Space, KSpace >::show().