DGtal 1.4.0
Loading...
Searching...
No Matches
DGtal::functions Namespace Reference

functions namespace gathers all DGtal functionsxs. More...

Namespaces

namespace  Hull2D
 Hull2D namespace gathers useful functions to compute and return the convex hull or the alpha-shape of a range of 2D points.
 
namespace  setops
 

Functions

template<typename T >
constexpr T const_pow (T b, unsigned int e)
 
template<typename T >
constexpr T const_middle (T K, unsigned int e)
 
template<typename Container , bool ordered>
bool isEqual (const Container &S1, const Container &S2)
 
template<typename Container >
bool isEqual (const Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
bool isSubset (const Container &S1, const Container &S2)
 
template<typename Container >
bool isSubset (const Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container & assignDifference (Container &S1, const Container &S2)
 
template<typename Container >
Container & assignDifference (Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container makeDifference (const Container &S1, const Container &S2)
 
template<typename Container >
Container makeDifference (const Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container & assignUnion (Container &S1, const Container &S2)
 
template<typename Container >
Container & assignUnion (Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container makeUnion (const Container &S1, const Container &S2)
 
template<typename Container >
Container makeUnion (const Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container & assignIntersection (Container &S1, const Container &S2)
 
template<typename Container >
Container & assignIntersection (Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container makeIntersection (const Container &S1, const Container &S2)
 
template<typename Container >
Container makeIntersection (const Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container & assignSymmetricDifference (Container &S1, const Container &S2)
 
template<typename Container >
Container & assignSymmetricDifference (Container &S1, const Container &S2)
 
template<typename Container , bool ordered>
Container makeSymmetricDifference (const Container &S1, const Container &S2)
 
template<typename Container >
Container makeSymmetricDifference (const Container &S1, const Container &S2)
 
template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool checkOnePoint (const ArithmeticalDSS< TCoordinate, TInteger, adjacency > &aDSS)
 
template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool checkPointsPosition (const ArithmeticalDSS< TCoordinate, TInteger, adjacency > &aDSS)
 
template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool checkPointsRemainder (const ArithmeticalDSS< TCoordinate, TInteger, adjacency > &aDSS)
 
template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool checkAll (const ArithmeticalDSS< TCoordinate, TInteger, adjacency > &aDSS)
 
template<typename Position , typename Coordinate , typename PointVector , typename OutputIterator , typename PositionFunctor , typename TruncationFunctor1 , typename TruncationFunctor2 >
bool smartCHNextVertex (const Position &positionBound, const Coordinate &remainderBound, PointVector &X, Coordinate &rX, const PointVector &Y, const Coordinate &rY, PointVector &V, Coordinate &rV, OutputIterator ito, const PositionFunctor &pos, const TruncationFunctor1 &f1, const TruncationFunctor2 &f2)
 Procedure that computes the next (lower or upper) vertex of the left hull of a DSS.
 
template<typename PointVector , typename Coordinate , typename Position , typename PositionFunctor , typename OutputIterator >
PointVector smartCH (const PointVector &aFirstPoint, const Coordinate &aRemainderBound, const Position &aPositionBound, const PointVector &aStep, const Coordinate &aRStep, const PointVector &aShift, const Coordinate &aRShift, const PositionFunctor &aPositionFunctor, OutputIterator uIto, OutputIterator lIto)
 Procedure that computes the lower and upper left hull of a DSS of first point aFirstPoint, length aPositionBound, contained in a digital straight line described by aRStep, aRShift and aRemainderBound.
 
template<typename DSL , typename OutputIterator >
DSL::Vector smartCH (const DSL &aDSL, const typename DSL::Point &aFirstPoint, const typename DSL::Position &aLength, OutputIterator uIto, OutputIterator lIto)
 Procedure that computes the lower and upper left hull of a DSS of first point aFirstPoint, length aLength, contained in a DSL aDSL [Roussillon 2014 : [105]].
 
template<typename PointVector , typename Position , typename OutputIterator , typename TruncationFunctor1 , typename TruncationFunctor2 , typename PositionFunctor >
bool smartCHPreviousVertex (PointVector &X, const PointVector &Y, PointVector &V, const Position &aFirstPosition, const Position &aLastPosition, OutputIterator ito, const PositionFunctor &pos, const TruncationFunctor1 &f1, const TruncationFunctor2 &f2)
 Procedure that computes the previous vertex of the left hull of a DSS of main direction vector V , first upper leaning point U and first positive Bezout point L. The computation stops as soon as a computed vertex is located before aLastPosition.

 
template<typename PointVector , typename Position , typename PositionFunctor , typename OutputIterator >
PointVector reversedSmartCH (PointVector U, PointVector L, PointVector V, const Position &aFirstPosition, const Position &aLastPosition, const PositionFunctor &aPositionFunctor, OutputIterator uIto, OutputIterator lIto)
 Procedure that computes the lower and upper left hull of the left subsegment of a greater DSS characterized by the first upper leaning point U, the first positive Bezout point L and its direction vector V. Note that the so-called left subsegment is bounded on the one hand by the first point of the DSS located at aFirstPosition and on the other hand by the point located at position aLastPosition.
 
template<typename DSS , typename OutputIterator >
DSS::Vector reversedSmartCH (const DSS &aDSS, const typename DSS::Position &aPositionBound, OutputIterator uIto, OutputIterator lIto)
 Procedure that computes the lower and upper left hull of the left subsegment of a greater DSS aDSS. Note that the so-called left subsegment is bounded on the one hand by the first point of aDSS and on the other hand by the point located at position aPositionBound [Roussillon 2014 : [105]].
 
template<typename T >
power (const T &aVal, const unsigned int exponent)
 
template<typename T >
roundToUpperPowerOfTwo (const T &n)
 
template<typename T >
abs (const T &a)
 
template<typename T >
square (T x)
 
template<typename T >
cube (T x)
 
template<typename TKSpace , typename TCellContainer , typename CellConstIterator , typename CellMapIteratorPriority >
uint64_t collapse (CubicalComplex< TKSpace, TCellContainer > &K, CellConstIterator S_itB, CellConstIterator S_itE, const CellMapIteratorPriority &priority, bool hintIsSClosed=false, bool hintIsKClosed=false, bool verbose=false)
 
template<typename TKSpace , typename TCellContainer , typename BdryCellOutputIterator , typename InnerCellOutputIterator >
void filterCellsWithinBounds (const CubicalComplex< TKSpace, TCellContainer > &K, const typename TKSpace::Point &kLow, const typename TKSpace::Point &kUp, BdryCellOutputIterator itBdry, InnerCellOutputIterator itInner)
 
template<typename TObject , typename TKSpace , typename TCellContainer >
std::unique_ptr< TObject > objectFromSpels (const CubicalComplex< TKSpace, TCellContainer > &C)
 
template<typename TComplex >
NeighborhoodConfiguration getSpelNeighborhoodConfigurationOccupancy (const TComplex &input_complex, const typename TComplex::Point &center, const std::unordered_map< typename TComplex::Point, NeighborhoodConfiguration > &mapPointToMask)
 
DGtal::CountedPtr< boost::dynamic_bitset<> > loadTable (const std::string &input_filename, const unsigned int known_size, const bool compressed=true)
 
template<unsigned int dimension = 3>
DGtal::CountedPtr< boost::dynamic_bitset<> > loadTable (const std::string &input_filename, const bool compressed=true)
 
template<typename TPoint >
DGtal::CountedPtr< std::unordered_map< TPoint, NeighborhoodConfiguration > > mapZeroPointNeighborhoodToConfigurationMask ()
 
template<typename TObject , typename TMap >
void generateSimplicityTable (const typename TObject::DigitalTopology &dt, TMap &map)
 
template<typename TVoxelComplex , typename TMap >
void generateVoxelComplexTable (TMap &map, std::function< bool(const TVoxelComplex &, const typename TVoxelComplex::Cell &) > skelFunction)
 
template<typename TComplex >
TComplex asymetricThinningScheme (TComplex &vc, std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select, std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel, bool verbose=false)
 
template<typename TComplex >
TComplex persistenceAsymetricThinningScheme (TComplex &vc, std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select, std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel, uint32_t persistence, bool verbose=false)
 
template<typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > selectFirst (const typename TComplex::Clique &clique)
 
template<typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > selectRandom (const typename TComplex::Clique &clique)
 
template<typename TComplex , typename TRandomGenerator >
std::pair< typename TComplex::Cell, typename TComplex::Data > selectRandom (const typename TComplex::Clique &clique, TRandomGenerator &gen)
 
template<typename TDistanceTransform , typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > selectMaxValue (const TDistanceTransform &dist_map, const typename TComplex::Clique &clique)
 
template<typename TComplex >
bool skelUltimate (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool skelEnd (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool skelSimple (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool skelIsthmus (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool oneIsthmus (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool twoIsthmus (const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TComplex >
bool skelWithTable (const boost::dynamic_bitset<> &table, const std::unordered_map< typename TComplex::Point, unsigned int > &pointToMaskMap, const TComplex &vc, const typename TComplex::Cell &cell)
 
template<typename TObject >
bool isZeroSurface (const TObject &small_obj)
 
template<typename TObject >
bool isOneSurface (const TObject &small_obj)
 
template<typename TObject >
std::vector< TObject > connectedComponents (const TObject &input_obj, bool verbose)
 
template<typename TComplex , typename TDistanceTransform = DistanceTransformation<Z3i::Space, Z3i::DigitalSet, ExactPredicateLpSeparableMetric<Z3i::Space, 3>>>
TComplex thinningVoxelComplex (TComplex &vc, const std::string &skel_type_str, const std::string &skel_select_type_str, const std::string &tables_folder, const int &persistence=0, const TDistanceTransform *distance_transform=nullptr, const bool profile=false, const bool verbose=false)
 

Detailed Description

functions namespace gathers all DGtal functionsxs.

Function Documentation

◆ abs()

template<typename T >
T DGtal::functions::abs ( const T & a)

Return the absolute value of an instance of type T.

Template Parameters
Tthe type of elements to compare (model of boost::LessThanComparable).
Parameters
afirst value
Returns
the absolute value |a|.

Definition at line 116 of file BasicMathFunctions.h.

117 {
118 BOOST_CONCEPT_ASSERT((boost::LessThanComparable<T>));
119 if (a<0)
120 return -a;
121 else
122 return a;
123 }
Go to http://www.sgi.com/tech/stl/LessThanComparable.html.
Definition Boost.dox:48

◆ assignDifference() [1/2]

template<typename Container , bool ordered>
Container & DGtal::functions::assignDifference ( Container & S1,
const Container & S2 )

Set difference operation. Updates the set S1 as S1 - S2.

Parameters
[in,out]S1an input set, S1 - S2 as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 896 of file SetFunctions.h.

897 {
898 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
899 BOOST_STATIC_CONSTANT
900 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
901 BOOST_STATIC_CONSTANT
902 ( bool, isOrdered = ordered
904
906 ::assignDifference( S1, S2 );
907 }
Aim: Specialize set operations (union, intersection, difference, symmetric_difference) according to t...

Referenced by makeDifference(), and DGtal::functions::setops::operator-=().

◆ assignDifference() [2/2]

template<typename Container >
Container & DGtal::functions::assignDifference ( Container & S1,
const Container & S2 )

Set difference operation. Updates the set S1 as S1 - S2.

Parameters
[in,out]S1an input set, S1 - S2 as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 918 of file SetFunctions.h.

919 {
920 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
921 BOOST_STATIC_CONSTANT
922 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
923 BOOST_STATIC_CONSTANT
924 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
925
927 ::assignDifference( S1, S2 );
928 }

◆ assignIntersection() [1/2]

template<typename Container , bool ordered>
Container & DGtal::functions::assignIntersection ( Container & S1,
const Container & S2 )

Set intersection operation. Updates the set S1 as \( S1 \cap S2 \).

Parameters
[in,out]S1an input set, \( S1 \cap S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 1082 of file SetFunctions.h.

1083 {
1084 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1085 BOOST_STATIC_CONSTANT
1086 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
1087 BOOST_STATIC_CONSTANT
1088 ( bool, isOrdered = ordered
1089 || ( isAssociative && IsOrderedAssociativeContainer< Container >::value ) );
1090
1092 ::assignIntersection( S1, S2 );
1093 }

Referenced by makeIntersection(), and DGtal::functions::setops::operator&=().

◆ assignIntersection() [2/2]

template<typename Container >
Container & DGtal::functions::assignIntersection ( Container & S1,
const Container & S2 )

Set intersection operation. Updates the set S1 as \( S1 \cap S2 \).

Parameters
[in,out]S1an input set, \( S1 \cap S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1104 of file SetFunctions.h.

1105 {
1106 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1107 BOOST_STATIC_CONSTANT
1108 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
1109 BOOST_STATIC_CONSTANT
1110 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
1111
1113 ::assignIntersection( S1, S2 );
1114 }

◆ assignSymmetricDifference() [1/2]

template<typename Container , bool ordered>
Container & DGtal::functions::assignSymmetricDifference ( Container & S1,
const Container & S2 )

Set symmetric difference operation. Updates the set S1 as \( S1 \Delta S2 \).

Parameters
[in,out]S1an input set, \( S1 \Delta S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 1176 of file SetFunctions.h.

1177 {
1178 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1179 BOOST_STATIC_CONSTANT
1180 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
1181 BOOST_STATIC_CONSTANT
1182 ( bool, isOrdered = ordered
1183 || ( isAssociative && IsOrderedAssociativeContainer< Container >::value ) );
1184
1187 }

Referenced by makeSymmetricDifference(), and DGtal::functions::setops::operator^=().

◆ assignSymmetricDifference() [2/2]

template<typename Container >
Container & DGtal::functions::assignSymmetricDifference ( Container & S1,
const Container & S2 )

Set symmetric difference operation. Updates the set S1 as \( S1 \Delta S2 \).

Parameters
[in,out]S1an input set, \( S1 \Delta S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1198 of file SetFunctions.h.

1199 {
1200 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1201 BOOST_STATIC_CONSTANT
1202 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
1203 BOOST_STATIC_CONSTANT
1204 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
1205
1208 }

◆ assignUnion() [1/2]

template<typename Container , bool ordered>
Container & DGtal::functions::assignUnion ( Container & S1,
const Container & S2 )

Set union operation. Updates the set S1 as \( S1 \cup S2 \).

Parameters
[in,out]S1an input set, \( S1 \cup S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 990 of file SetFunctions.h.

991 {
992 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
993 BOOST_STATIC_CONSTANT
994 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
995 BOOST_STATIC_CONSTANT
996 ( bool, isOrdered = ordered
998
1000 ::assignUnion( S1, S2 );
1001 }

Referenced by makeUnion(), and DGtal::functions::setops::operator|=().

◆ assignUnion() [2/2]

template<typename Container >
Container & DGtal::functions::assignUnion ( Container & S1,
const Container & S2 )

Set union operation. Updates the set S1 as \( S1 \cup S2 \).

Parameters
[in,out]S1an input set, \( S1 \cup S2 \) as output.
[in]S2another input set.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1012 of file SetFunctions.h.

1013 {
1014 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1015 BOOST_STATIC_CONSTANT
1016 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
1017 BOOST_STATIC_CONSTANT
1018 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
1019
1021 ::assignUnion( S1, S2 );
1022 }

◆ asymetricThinningScheme()

template<typename TComplex >
TComplex DGtal::functions::asymetricThinningScheme ( TComplex & vc,
std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select,
std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel,
bool verbose = false )

Referenced by thinningVoxelComplex().

◆ checkAll()

template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool DGtal::functions::checkAll ( const ArithmeticalDSS< TCoordinate, TInteger, adjacency > & aDSS)

Checks whether a DSS is valid or not. NB: in logarithmic time (in order to check that a and b are relatively prime)

Parameters
aDSSany DSS
Returns
'true' if valid, 'false' otherwise.

◆ checkOnePoint()

template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool DGtal::functions::checkOnePoint ( const ArithmeticalDSS< TCoordinate, TInteger, adjacency > & aDSS)

Checks the validity of the DSS when it contains only one point.

Parameters
aDSSany DSS
Precondition
the DSS contains only one point
Returns
'true' if the DSS is valid, 'false' otherwise.

◆ checkPointsPosition()

template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool DGtal::functions::checkPointsPosition ( const ArithmeticalDSS< TCoordinate, TInteger, adjacency > & aDSS)

Checks that the difference between two extremal upper (resp. lower) leaning points is equal to the direction vector (a,b) scaled by an integer. Checks that there is no pattern between end points and extremal leaning points.

Parameters
aDSSany DSS
Precondition
the DSS contains more than one point, ie a and b are not both null.
Returns
'true' if ok, 'false' otherwise.

◆ checkPointsRemainder()

template<typename TCoordinate , typename TInteger , unsigned short adjacency>
bool DGtal::functions::checkPointsRemainder ( const ArithmeticalDSS< TCoordinate, TInteger, adjacency > & aDSS)

Checks the consistency between the parameters and the leaning points: first and last upper leaning points should have a remainder equal to mu while firsta and last lower leaning points should have a remainder equal to mu + omega - 1. Moreover, front and back points should have a remainder lying within the range [mu, mu+omega[.

Parameters
aDSSany DSS
Precondition
the DSS contains more than one point, ie a and b are not both null.
Returns
'true' if this property is fulfilled, 'false' otherwise.

◆ collapse()

template<typename TKSpace , typename TCellContainer , typename CellConstIterator , typename CellMapIteratorPriority >
uint64_t DGtal::functions::collapse ( CubicalComplex< TKSpace, TCellContainer > & K,
CellConstIterator S_itB,
CellConstIterator S_itE,
const CellMapIteratorPriority & priority,
bool hintIsSClosed = false,
bool hintIsKClosed = false,
bool verbose = false )

Collapse a user-specified part of complex K, collapsing cells following priority [priority], in a decreasing sequence until no more collapse is feasible. The range [S_itb,S_itE) provides the starting cells, generally (but not compulsory) maximal cells. The resulting complex is guaranteed to keep the same homotopy type (a kind of topology equivalence).

Note
Cells whose data has been marked as FIXED are not removed.
Only cells that are in the closure of [S_itb,S_itE) may be removed, and only if they are not marked as FIXED.
Advanced:
If you use a DefaultCellMapIteratorPriority object as priority, then the VALUE part of each cell data defines the priority (the highest value the soonest are these cells collapsed). You may thus fill these cell values before calling this method.
Template Parameters
TKSpacethe digital space in which lives the cubical complex.
TCellContainerthe associative container used to store cells within the cubical complex.
CellConstIteratorany forward const iterator on Cell.
CellMapIteratorPriorityany type defining a method 'bool operator()( const Cell&, const Cell&) const'. Defines the order in which cells are collapsed.
See also
DefaultCellMapIteratorPriority
Parameters
[in,out]Kthe complex that is collapsed.
S_itBthe start of a range of cells which is included in [K].
S_itEthe end of a range of cells which is included in [K].
prioritythe object that assign a priority to each cell.
hintIsSClosedindicates if [S_itb,S_ite) is a closed set (faster in this case).
hintIsKClosedindicates that complex K is closed.
verboseoutputs some information during processing when 'true'.
Returns
the number of cells removed from complex K.
See also
topology/cubical-complex-collapse.cpp

Referenced by main(), main(), SCENARIO(), and SCENARIO().

◆ connectedComponents()

template<typename TObject >
std::vector< TObject > DGtal::functions::connectedComponents ( const TObject & input_obj,
bool verbose )

Get all connected components of the input object.

Template Parameters
TObjectObject Type
Parameters
input_objinput object
verboseflag to be verbose at execution
Returns
vector of TObject containing the different connected components of the object.
See also
ObjectBoostGraphInterface.h

◆ const_middle()

template<typename T >
T DGtal::functions::const_middle ( T K,
unsigned int e )
constexpr
Template Parameters
Tany model of bounded number.
Parameters
Ka non negative number
ea non negative integer
Returns
the index of the middle element in the e-dimensional array of width \( 2K+1 \), computed at compile time.
auto m1 = functions::const_middle( 1, 2 ); // 4, dans le tableau 3x3
auto m2 = functions::const_middle( 2, 2 ); // 12, dans le tableau 5x5
auto m3 = functions::const_middle( 1, 3 ); // 13, dans le tableau 3x3x3
constexpr T const_middle(T K, unsigned int e)

Definition at line 75 of file ConstExpressions.h.

75 {
76 return e <= 1
77 ? T( K )
78 : K * const_pow( 2 * K + 1, e - 1 ) + const_middle( K, e - 1 );
79 }
constexpr T const_pow(T b, unsigned int e)
KSpace K

References const_middle(), const_pow(), and K.

Referenced by const_middle().

◆ const_pow()

template<typename T >
T DGtal::functions::const_pow ( T b,
unsigned int e )
constexpr
Template Parameters
Tany model of bounded number.
Parameters
ba number
ea non negative integer
Returns
the constant expression \( b^e \), computed at compile time.
auto v = functions::const_pow( 5, 3 ); // 5^3

Definition at line 60 of file ConstExpressions.h.

60 {
61 return e == 0 ? T(1) : b * const_pow( b, e - 1 );
62 }

References const_pow().

Referenced by const_middle(), and const_pow().

◆ cube()

template<typename T >
T DGtal::functions::cube ( T x)
inline

Returns the value x * x * x

Template Parameters
Ta type with the multiply operator.
Parameters
xany value
Returns
the value x * x * x

Definition at line 144 of file BasicMathFunctions.h.

145 { return x * x * x; }

◆ filterCellsWithinBounds()

template<typename TKSpace , typename TCellContainer , typename BdryCellOutputIterator , typename InnerCellOutputIterator >
void DGtal::functions::filterCellsWithinBounds ( const CubicalComplex< TKSpace, TCellContainer > & K,
const typename TKSpace::Point & kLow,
const typename TKSpace::Point & kUp,
BdryCellOutputIterator itBdry,
InnerCellOutputIterator itInner )

Computes the cells of the given complex K that lies on the boundary or inside the parallelepiped specified by bounds kLow and kUp.

Template Parameters
TKSpacethe digital space in which lives the cubical complex.
TCellContainerthe associative container used to store cells within the cubical complex.
BdryCellOutputIteratorany output iterator on TCubicalComplex::Cell.
InnerCellOutputIteratorany output iterator on TCubicalComplex::Cell.
Parameters
[in]Kany cubical complex.
[in]kLowany Khalimsky coordinate representing the lowest possible cell.
[in]kUpany Khalimsky coordinate representing the uppermost possible cell.
[in,out]itBdryAn output iterator on Cell that outputs all the cells of K that lie on the boundary of the parallelepiped specified by bounds kLow and kUp.
[in,out]itInnerAn output iterator on Cell that outputs all the cells of K that lie in the interior of the parallelepiped specified by bounds kLow and kUp.
Note
Complexity is linear in the number of cells of K (but the constant is also linear in the dimension of K).

◆ generateSimplicityTable()

template<typename TObject , typename TMap >
void DGtal::functions::generateSimplicityTable ( const typename TObject::DigitalTopology & dt,
TMap & map )

Given a digital topology dt, generates tables that tells if the central point is simple for the specified configuration. The configuration is determined by a sequence of bits, the first bit for the point in the neighborhood, the second bit for the second point, etc. When set to one, the point is in the neighborhood.

Template Parameters
TObjectthe type of object whose simpleness we wish to precompute. Includes the topology.
TMapthe type used to store the mapping configuration -> bool.
Parameters
dtan instance of the digital topology.
map(modified) the mapping configuration -> bool.

Definition at line 71 of file NeighborhoodTablesGenerators.h.

74 {
75 typedef typename TObject::DigitalSet DigitalSet;
76 typedef typename TObject::Point Point;
77 typedef typename DigitalSet::Domain Domain;
78 typedef typename Domain::ConstIterator DomainConstIterator;
79
80 Point p1 = Point::diagonal( -1 );
81 Point p2 = Point::diagonal( 1 );
82 Point c = Point::diagonal( 0 );
83 Domain domain( p1, p2 );
84 DigitalSet shapeSet( domain );
85 TObject shape( dt, shapeSet );
86 unsigned int k = 0;
87 for ( DomainConstIterator it = domain.begin(); it != domain.end(); ++it )
88 if ( *it != c ) ++k;
89 ASSERT( ( k < 32 )
90 && "[generateSimplicityTable] number of configurations is too high." );
91 unsigned int nbCfg = 1 << k;
92 for ( NeighborhoodConfiguration cfg = 0; cfg < nbCfg; ++cfg )
93 {
94 if ( ( cfg % 1000 ) == 0 )
95 {
96 trace.progressBar( (double) cfg, (double) nbCfg );
97 }
98 shape.pointSet().clear();
99 shape.pointSet().insert( c );
101 for ( DomainConstIterator it = domain.begin(); it != domain.end(); ++it )
102 {
103 if ( *it != c )
104 {
105 if ( cfg & mask ) shape.pointSet().insert( *it );
106 mask <<= 1;
107 }
108 }
109 bool simple = shape.isSimple( c );
110 map[ cfg ] = simple;
111 }
112 }
Aim: A wrapper class around a STL associative container for storing sets of digital points within som...
void progressBar(const double currentValue, const double maximalValue)
Trace trace
Definition Common.h:153
MyPointD Point
Domain domain
HyperRectDomain< Space > Domain
Z2i::DigitalSet DigitalSet

References domain, dt, DGtal::Trace::progressBar(), and DGtal::trace.

Referenced by main(), and main().

◆ generateVoxelComplexTable()

template<typename TVoxelComplex , typename TMap >
void DGtal::functions::generateVoxelComplexTable ( TMap & map,
std::function< bool(const TVoxelComplex &, const typename TVoxelComplex::Cell &) > skelFunction )

Generates a table mapping the number of configuration of a 26 topology voxel neighborhood, and the boolean result of a predicate function applied to the central point for each configuration. The configuration is determined by a sequence of bits, the first bit for the point in the neighborhood, the second bit for the second point, etc. When set to one, the point is in the neighborhood.

Template Parameters
TVoxelComplexthe type of the VoxelComplex whose property we wish to precompute.
TMapthe type used to store the mapping configuration -> bool.
Parameters
map(modified) the mapping configuration -> bool.
skelFunctiona predicate function related to the property we want to check.

Definition at line 132 of file NeighborhoodTablesGenerators.h.

139 {
141 using Point = typename Domain::Point ;
143 Domain, std::unordered_set< Point > >;
144 using DomainConstIterator = typename Domain::ConstIterator ;
145 using KSpace = typename TVoxelComplex::KSpace;
146
147 Point p1 = Point::diagonal( -1 );
148 Point p2 = Point::diagonal( 1 );
149 Point c = Point::diagonal( 0 );
150 Domain domain( p1, p2 );
151 DigitalSet shapeSet( domain );
152 unsigned int k = 0;
153 for ( DomainConstIterator it = domain.begin(); it != domain.end(); ++it )
154 if ( *it != c ) ++k;
155 ASSERT( ( k < 32 )
156 && "[generateVoxelComplexTable] number of configurations is too high." );
157 unsigned int nbCfg = 1 << k;
158
159 KSpace ks;
160 // Pad KSpace domain.
161 ks.init(domain.lowerBound() + Point::diagonal( -1 ) ,
162 domain.upperBound() + Point::diagonal( 1 ),
163 true);
164 TVoxelComplex vc(ks);
165 vc.construct(shapeSet);
166 for ( unsigned int cfg = 0; cfg < nbCfg; ++cfg ){
167 if ( ( cfg % 1000 ) == 0 )
168 trace.progressBar( (double) cfg, (double) nbCfg );
169 vc.clear();
170 vc.insertVoxelPoint(c);
171 unsigned int mask = 1;
172 for ( DomainConstIterator it = domain.begin(); it != domain.end(); ++it ){
173 if ( *it != c ) {
174 if ( cfg & mask ) vc.insertVoxelPoint( *it );
175 mask <<= 1;
176 }
177 }
178 const auto &kcell = vc.space().uSpel(c);
179 bool predicate_output = skelFunction(vc, kcell);
180 map[ cfg ] = predicate_output;
181 }
182 }
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
bool init(const Point &lower, const Point &upper, bool isClosed)
Specifies the upper and lower bounds for the maximal cells in this space.
HyperRectDomain< Space > Domain
Definition StdDefs.h:172

References domain, DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::Trace::progressBar(), and DGtal::trace.

Referenced by main().

◆ getSpelNeighborhoodConfigurationOccupancy()

template<typename TComplex >
NeighborhoodConfiguration DGtal::functions::getSpelNeighborhoodConfigurationOccupancy ( const TComplex & input_complex,
const typename TComplex::Point & center,
const std::unordered_map< typename TComplex::Point, NeighborhoodConfiguration > & mapPointToMask )

Get the occupancy configuration of the neighborhood of a point in a cubical complex. The neighborhood size is considered 3^D for dimension D of the point (ie 3x3x3 cube for 3D point).

Template Parameters
TComplexComplex type.
Parameters
input_complexinput complex. Used to check what points are occupied.
centerof the neighborhood. It doesn't matter if center belongs or not to input_complex.
mapPointToMaskmap[Point]->configuration, where Point is inside a DxD cube centered in {0,0,..} in ND.
Note
This doesn't work with KSpace coordinates, these must be converted to digital coordinates before:
See also
KhalimskySpaceND::uCoords(3,cell)
mapPointToBitMask
Returns
bit configuration

◆ isEqual() [1/2]

template<typename Container , bool ordered>
bool DGtal::functions::isEqual ( const Container & S1,
const Container & S2 )

Equality test.

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
true iff S1 is equal to S2 (i.e. S1 is a subset of S2 and S2 is a subset of S1).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 789 of file SetFunctions.h.

790 {
791 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
792 BOOST_STATIC_CONSTANT
793 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
794 BOOST_STATIC_CONSTANT
795 ( bool, isOrdered = ordered
797
799 ::isEqual( S1, S2 );
800 }

Referenced by DGtal::operator!=(), and DGtal::operator==().

◆ isEqual() [2/2]

template<typename Container >
bool DGtal::functions::isEqual ( const Container & S1,
const Container & S2 )

Equality test.

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
true iff S1 is equal to S2 (i.e. S1 is a subset of S2 and S2 is a subset of S1).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 815 of file SetFunctions.h.

816 {
817 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
818 BOOST_STATIC_CONSTANT
819 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
820 BOOST_STATIC_CONSTANT
821 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
822
824 ::isEqual( S1, S2 );
825 }

◆ isOneSurface()

template<typename TObject >
bool DGtal::functions::isOneSurface ( const TObject & small_obj)

Check if input object is a simple closed curve. Object must be:

See also
isZeroSurface
Template Parameters
TObjectObject Type
Parameters
small_objinput object
Returns
bool

◆ isSubset() [1/2]

template<typename Container , bool ordered>
bool DGtal::functions::isSubset ( const Container & S1,
const Container & S2 )

Inclusion test.

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
true iff S1 is a subset of S2.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 845 of file SetFunctions.h.

846 {
847 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
848 BOOST_STATIC_CONSTANT
849 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
850 BOOST_STATIC_CONSTANT
851 ( bool, isOrdered = ordered
853
855 ::isSubset( S1, S2 );
856 }

Referenced by DGtal::operator<=(), and DGtal::operator>=().

◆ isSubset() [2/2]

template<typename Container >
bool DGtal::functions::isSubset ( const Container & S1,
const Container & S2 )

Inclusion test.

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
true iff S1 is a subset of S2.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 869 of file SetFunctions.h.

870 {
871 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
872 BOOST_STATIC_CONSTANT
873 ( bool, isAssociative = IsAssociativeContainer< Container >::value );
874 BOOST_STATIC_CONSTANT
875 ( bool, isOrdered = isAssociative && IsOrderedAssociativeContainer< Container >::value );
876
878 ::isSubset( S1, S2 );
879 }

◆ isZeroSurface()

template<typename TObject >
bool DGtal::functions::isZeroSurface ( const TObject & small_obj)

Check if the object contains, exclusively, two disconnected voxels.

See also
Object::computeConnectedness
Template Parameters
TObjectObject Type
Parameters
small_objinput object
Returns
bool

◆ loadTable() [1/2]

template<unsigned int dimension = 3>
DGtal::CountedPtr< boost::dynamic_bitset<> > DGtal::functions::loadTable ( const std::string & input_filename,
const bool compressed = true )
inline

Load existing look up table existing in file_name, precalculated tables can be accessed including the header: "DGtal/topology/tables/NeighborhoodTables.h"

Template Parameters
dimensionof the space input_filename table refers. 2 or 3
Parameters
input_filenameplain text containing the bool table.
compressedtrue if table to read has been compressed with zlib.
Returns
smart ptr of map[neighbor_configuration] -> bool
See also
NeighborhoodConfigurations::loadTable

◆ loadTable() [2/2]

DGtal::CountedPtr< boost::dynamic_bitset<> > DGtal::functions::loadTable ( const std::string & input_filename,
const unsigned int known_size,
const bool compressed = true )
inline

Load existing look up table existing in file_name, precalculated tables can be accessed including the header: "DGtal/topology/tables/NeighborhoodTables.h"

Parameters
input_filenameplain text containing the bool table.
known_sizeof the bitset, for 2D = 256 (2^8), 3D = 67108864 (2^26)
compressedtrue if table to read has been compressed with zlib.
Returns
smart ptr of map[neighbor_configuration] -> bool
Note
The tables were calculated using the generateTableXXX examples. Compressed files of the tables are distributed in the source code. At build or install time, the header "DGtal/topology/tables/NeighborhoodTables.h" is generated. It has const strings variables with the file names of the tables.

Referenced by SCENARIO(), SCENARIO(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), testSetTable(), and thinningVoxelComplex().

◆ makeDifference() [1/2]

template<typename Container , bool ordered>
Container DGtal::functions::makeDifference ( const Container & S1,
const Container & S2 )

Set difference operation. Returns the difference of S1 - S2.

Parameters
[in]S1an input set
[in]S2another input set.
Returns
the set S1 - S2.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 946 of file SetFunctions.h.

947 {
948 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
949 Container S( S1 );
950 assignDifference<Container, ordered>( S, S2 );
951 return S;
952 }

References assignDifference().

Referenced by DGtal::functions::setops::operator-().

◆ makeDifference() [2/2]

template<typename Container >
Container DGtal::functions::makeDifference ( const Container & S1,
const Container & S2 )

Set difference operation. Returns the difference of S1 - S2.

Parameters
[in]S1an input set
[in]S2another input set.
Returns
the set S1 - S2.
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 965 of file SetFunctions.h.

966 {
967 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
968 Container S( S1 );
969 assignDifference( S, S2 );
970 return S;
971 }
Container & assignDifference(Container &S1, const Container &S2)

References assignDifference().

◆ makeIntersection() [1/2]

template<typename Container , bool ordered>
Container DGtal::functions::makeIntersection ( const Container & S1,
const Container & S2 )

Set intersection operation. Returns the set \( S1 \cap S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \cap S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 1131 of file SetFunctions.h.

1132 {
1133 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1134 Container S( S1 );
1135 assignIntersection<Container, ordered>( S, S2 );
1136 return S;
1137 }

References assignIntersection().

Referenced by DGtal::functions::setops::operator&().

◆ makeIntersection() [2/2]

template<typename Container >
Container DGtal::functions::makeIntersection ( const Container & S1,
const Container & S2 )

Set intersection operation. Returns the set \( S1 \cap S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \cap S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1149 of file SetFunctions.h.

1150 {
1151 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1152 Container S( S1 );
1153 assignIntersection( S, S2 );
1154 return S;
1155 }
Container & assignIntersection(Container &S1, const Container &S2)

References assignIntersection().

◆ makeSymmetricDifference() [1/2]

template<typename Container , bool ordered>
Container DGtal::functions::makeSymmetricDifference ( const Container & S1,
const Container & S2 )

Set symmetric difference operation. Returns the set \( S1 \Delta S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \Delta S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 1225 of file SetFunctions.h.

1226 {
1227 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1228 Container S( S1 );
1229 assignSymmetricDifference<Container, ordered>( S, S2 );
1230 return S;
1231 }

References assignSymmetricDifference().

Referenced by DGtal::functions::setops::operator^().

◆ makeSymmetricDifference() [2/2]

template<typename Container >
Container DGtal::functions::makeSymmetricDifference ( const Container & S1,
const Container & S2 )

Set symmetric difference operation. Returns the set \( S1 \Delta S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \Delta S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1243 of file SetFunctions.h.

1244 {
1245 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1246 Container S( S1 );
1248 return S;
1249 }
Container & assignSymmetricDifference(Container &S1, const Container &S2)

References assignSymmetricDifference().

◆ makeUnion() [1/2]

template<typename Container , bool ordered>
Container DGtal::functions::makeUnion ( const Container & S1,
const Container & S2 )

Set union operation. Returns the set \( S1 \cup S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \cup S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).
orderedwhen 'true', the user indicates that values are ordered (e.g. a sorted vector), otherwise, depending on the container type, the compiler may still determine that values are ordered.

Definition at line 1039 of file SetFunctions.h.

1040 {
1041 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1042 Container S( S1 );
1043 assignUnion<Container, ordered>( S, S2 );
1044 return S;
1045 }

References assignUnion().

Referenced by DGtal::functions::setops::operator|().

◆ makeUnion() [2/2]

template<typename Container >
Container DGtal::functions::makeUnion ( const Container & S1,
const Container & S2 )

Set union operation. Returns the set \( S1 \cup S2 \).

Parameters
[in]S1an input set.
[in]S2another input set.
Returns
the set \( S1 \cup S2 \).
Template Parameters
Containerany type of container (even a sequence, a set, an unordered_set, a map, etc).

Definition at line 1057 of file SetFunctions.h.

1058 {
1059 BOOST_STATIC_ASSERT( IsContainer< Container >::value );
1060 Container S( S1 );
1061 assignUnion( S, S2 );
1062 return S;
1063 }
Container & assignUnion(Container &S1, const Container &S2)

References assignUnion().

◆ mapZeroPointNeighborhoodToConfigurationMask()

template<typename TPoint >
DGtal::CountedPtr< std::unordered_map< TPoint, NeighborhoodConfiguration > > DGtal::functions::mapZeroPointNeighborhoodToConfigurationMask ( )
inline

Maps any point in the neighborhood of point Zero (0,..,0) to its corresponding configuration bit mask. This is a helper to use with tables. The order of the configuration is lexicographic, starting in {-1, -1, ...}.

Note
the neighborhood is considered to be all points p which ||p-zero|| <= 1

Example: Point{ -1, -1, -1 } = 1; // corresponding to mask x x 0000 0001 Point{ 0, -1, -1 } = 2; // corresponding to mask x x 0000 0010 Point{ 1, 1, 1 } = 2^26; // x 0010 x x x x x x

Note
NeighborhoodConfiguration is type uint 32 bits, so the max dimension supported is 3.
See also
HyperRectDomain_Iterator::nextLexicographicOrder
testNeighborhoodConfigurations.cpp shows the complete mapping.
Template Parameters
TPointtype of point to create map and input the desired dimension.
Returns
map[Point]->configuration smart pointer.

Referenced by SCENARIO(), TEST_CASE(), TEST_CASE(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), TEST_CASE_METHOD(), and thinningVoxelComplex().

◆ objectFromSpels()

template<typename TObject , typename TKSpace , typename TCellContainer >
std::unique_ptr< TObject > DGtal::functions::objectFromSpels ( const CubicalComplex< TKSpace, TCellContainer > & C)

Create object from the spels in the complex.

User has to provide a 3D TObject type with its associated DigitalSet and DigitalTopology.

Given a dimension n, spels are the n-cells, equivalently, spels are the grid-points in Z^n.

Template Parameters
TObjectwith its associdated DigitalSet and DigitalTopology
TKSpacekspace type of the input CubicalComplex.
TCellContainercell container type of the input CubicalComplex
Parameters
Cinput CubicalComplex
Returns
unique_ptr of created object with the pointset containing the spels of the complex.

◆ oneIsthmus()

template<typename TComplex >
bool DGtal::functions::oneIsthmus ( const TComplex & vc,
const typename TComplex::Cell & cell )

Check if input cell is a 1-isthmus. A voxel is a 1-isthmus if, after a thinning, its proper neighborhood is made only by two voxels, ie, it is a 0-Surface isZeroSurface.

See also
isZeroSurface
Object::properNeighborhood
Template Parameters
TComplexVoxelComplex.
Parameters
vcinput complex.
cellapply function on input cell.
Returns
bool

Referenced by main().

◆ persistenceAsymetricThinningScheme()

template<typename TComplex >
TComplex DGtal::functions::persistenceAsymetricThinningScheme ( TComplex & vc,
std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select,
std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel,
uint32_t persistence,
bool verbose = false )

Referenced by thinningVoxelComplex().

◆ power()

template<typename T >
T DGtal::functions::power ( const T & aVal,
const unsigned int exponent )

Compute exponentiation by squaring of a scalar aVal of type T by the exponent exponent (unsigned int). The computation is done in \( O(\log(exponent))\) multiplications.

Note
This function is better than std::pow on unsigned int exponents and integer value type since it performs exact computations (no cast to float or doubles).
Parameters
aValthe value
exponentthe exponent
Template Parameters
Tscalar value type (must have '*' operator).
Returns
aVal^exponent
See also
square, cube

Definition at line 73 of file BasicMathFunctions.h.

74 {
75 unsigned int q=exponent;
76 T p(aVal);
77
78 if (exponent == 0) { return 1; }
79
80 T result = NumberTraits<T>::ONE;
81 while (q != 0)
82 {
83 if (q % 2 == 1) { // q is odd
84 result *= p;
85 q--;
86 }
87 p *= p;
88 q /= 2;
89 }
90 return result;
91 }
Aim: The traits class for all models of Cinteger.

Referenced by testBasicMathFunctions().

◆ reversedSmartCH() [1/2]

template<typename DSS , typename OutputIterator >
DSS::Vector DGtal::functions::reversedSmartCH ( const DSS & aDSS,
const typename DSS::Position & aPositionBound,
OutputIterator uIto,
OutputIterator lIto )
inline

Procedure that computes the lower and upper left hull of the left subsegment of a greater DSS aDSS. Note that the so-called left subsegment is bounded on the one hand by the first point of aDSS and on the other hand by the point located at position aPositionBound [Roussillon 2014 : [105]].

Parameters
aDSSbounding DSS
aPositionBoundposition of the last point of the subsegment (should be located after the first point of aDSS).
uItooutput iterator used to store the vertices of the upper convex hull
lItooutput iterator used to store the vertices of the lower convex hull
Template Parameters
DSSa model of arithmetical DSS
OutputIteratora model of output iterator
Returns
last direction vector, ie. the rational slope of minimal denominator

◆ reversedSmartCH() [2/2]

template<typename PointVector , typename Position , typename PositionFunctor , typename OutputIterator >
PointVector DGtal::functions::reversedSmartCH ( PointVector U,
PointVector L,
PointVector V,
const Position & aFirstPosition,
const Position & aLastPosition,
const PositionFunctor & aPositionFunctor,
OutputIterator uIto,
OutputIterator lIto )
inline

Procedure that computes the lower and upper left hull of the left subsegment of a greater DSS characterized by the first upper leaning point U, the first positive Bezout point L and its direction vector V. Note that the so-called left subsegment is bounded on the one hand by the first point of the DSS located at aFirstPosition and on the other hand by the point located at position aLastPosition.

Parameters
Ulast upper convex hull vertex
Llast lower convex hull vertex
Vlast valid Bezout vector (main direction vector)
aFirstPositionposition of the first point of the subsegment
aLastPositionposition of the last point of the subsegment
aPositionFunctorposition functor, which returns the position of any given point/vector
uItooutput iterator used to store the vertices of the upper convex hull
lItooutput iterator used to store the vertices of the lower convex hull
Template Parameters
PointVectora model of 2d point/vector
Positiona model of integer for the position of the point in the bounding DSS
PositionFunctora model of unary functor that returns the position of a point/vector
OutputIteratora model of output iterator
Returns
last direction vector, ie. the rational slope of minimal denominator

Referenced by basicTest2(), and reversedSmartCHSubsegment().

◆ roundToUpperPowerOfTwo()

template<typename T >
T DGtal::functions::roundToUpperPowerOfTwo ( const T & n)

Compute the next higher power of two of the given argument n of type T.

Template Parameters
Tthe type of the element T
Parameters
nan element of type T (casted to unsigned integer).
Returns
the next higher power of two.

Definition at line 102 of file BasicMathFunctions.h.

102 {
103 return (T) 1 << (1+DGtal::Bits::mostSignificantBit( (unsigned int) n-1 ) );
104 }
static unsigned int mostSignificantBit(DGtal::uint8_t n)
Definition Bits.h:343

References DGtal::Bits::mostSignificantBit().

Referenced by DGtal::Viewer3D< TSpace, TKSpace >::GLTextureImage::GLTextureImage(), and testBasicMathFunctions().

◆ selectFirst()

template<typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > DGtal::functions::selectFirst ( const typename TComplex::Clique & clique)

Select first voxel of input clique.

Template Parameters
TComplexinput CubicalComplex
Parameters
cliquefrom where cell is chosen.
Returns
first voxel of clique.

Referenced by thinningVoxelComplex().

◆ selectMaxValue()

template<typename TDistanceTransform , typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > DGtal::functions::selectMaxValue ( const TDistanceTransform & dist_map,
const typename TComplex::Clique & clique )

Select cell from clique that has max value looking at the input dist_map. The points in the dist_map and in the clique must refer to the same position.

If you need to have a std::function<bool(const Clique &)> signature (for using it in thinning algorithms), use a lambda: subsitute skelRandom (for example) for:

auto selectDistMax =
[&dist_map](const Clique & clique){
return selectMaxDistance<TDistMap, TComplex>(dist_map, clique);
}
Template Parameters
TDistanceTransformContainer type for the distance map.
TComplexinput CubicalComplex
Parameters
dist_mapcontainer holding the values.
cliquefrom where cell is chosen.
Returns
cell from input clique with highest value.
See also
DistanceTransformation.h

Referenced by thinningVoxelComplex().

◆ selectRandom() [1/2]

template<typename TComplex >
std::pair< typename TComplex::Cell, typename TComplex::Data > DGtal::functions::selectRandom ( const typename TComplex::Clique & clique)

Select random voxel from input clique.

Template Parameters
TComplexinput CubicalComplex
Parameters
cliquefrom where cell is chosen.
Returns
random voxel from input clique.

Referenced by thinningVoxelComplex().

◆ selectRandom() [2/2]

template<typename TComplex , typename TRandomGenerator >
std::pair< typename TComplex::Cell, typename TComplex::Data > DGtal::functions::selectRandom ( const typename TComplex::Clique & clique,
TRandomGenerator & gen )

Select random voxel from input clique.

Template Parameters
TComplexCubicalComplex
TRandomGeneratorRandomGenerator
Parameters
cliquefrom where cell is chosen
genrandom generator
Returns
random voxel from input clique.

◆ skelEnd()

template<typename TComplex >
bool DGtal::functions::skelEnd ( const TComplex & vc,
const typename TComplex::Cell & cell )

Check if input cell only has one neighbor, using Object::topology.

Template Parameters
TComplexVoxelComplex
Parameters
vcinput voxel complex.
cellc apply function on this voxel cell.
Returns
true if voxel cell only has neighbor.

Referenced by thinningVoxelComplex().

◆ skelIsthmus()

template<typename TComplex >
bool DGtal::functions::skelIsthmus ( const TComplex & vc,
const typename TComplex::Cell & cell )

Check if input cell is a 1 or 2 Isthmus.

Template Parameters
TComplexVoxelComplex.
Parameters
vcinput complex.
cellapply function on input cell.
Returns
oneIsthmus || twoIsthmus
See also
oneIsthmus
twoIsthmus

Referenced by main().

◆ skelSimple()

template<typename TComplex >
bool DGtal::functions::skelSimple ( const TComplex & vc,
const typename TComplex::Cell & cell )

Check if input cell is simple using VoxelComplex::isSimple interface to Object::isSimple.

See also
VoxelComplex::isSimple
Object::isSimple
Template Parameters
TComplexVoxelComplex.
Parameters
vcinput complex.
cellapply function on input cell.
Returns
true if voxel is simple.

◆ skelUltimate()

template<typename TComplex >
bool DGtal::functions::skelUltimate ( const TComplex & vc,
const typename TComplex::Cell & cell )

Always returns false. Used in thinning schemes to calculate an ultimate skeleton. An ultimate skeleton only keeps voxels that don't change the topology.

Note
The number of cells of a thinning using this function is the same as the number of connected components of an object.
See also
asymetricThinningScheme
Template Parameters
TComplexVoxelComplex
Parameters
vcinput voxel complex.
cellc apply function on this voxel cell.
Returns
always false.

Referenced by thinningVoxelComplex().

◆ skelWithTable()

template<typename TComplex >
bool DGtal::functions::skelWithTable ( const boost::dynamic_bitset<> & table,
const std::unordered_map< typename TComplex::Point, unsigned int > & pointToMaskMap,
const TComplex & vc,
const typename TComplex::Cell & cell )

Generic predicate to use external tables[configuration]->bool with skel functions. Can be adapted to any table using lambdas.

See also
LookUpTableFunctions.h
tests/topology/testVoxelComplex.h

If you need to have a std::function<bool(const Complex & vc, const Cell & c )> signature (for using it in thinning algorithms), use a lambda to capture values: subsitute skelIsthmus (for example) for:

auto skelWithTableIsthmus =
[&table, &pointToMaskMap](const Complex & vc, const Cell & cell){
return skelWithTable<TComplex>(table, pointToMaskMap, vc, cell);
}
bool skelWithTable(const boost::dynamic_bitset<> &table, const std::unordered_map< typename TComplex::Point, unsigned int > &pointToMaskMap, const TComplex &vc, const typename TComplex::Cell &cell)
Template Parameters
TComplexinput CubicalComplex type.
Parameters
table[configuration]->bool
See also
VoxelComplex::loadTable
LookUpTableFunctions.h::loadTable
Parameters
pointToMaskMapmap[neighborhood points] to a bit mask. Used to get the neighborhood configuration.
See also
VoxelComplex::pointToMask
LookUpTableFunctions.h::mapPointToBitMask
Parameters
vcinput complex.
cellinput cell, center from where the neighborhood [configuration] will be checked. Note that only neighborhood are checked to belong to the complex, not the input cell.
Returns
bool from selected table[configuration].

Referenced by thinningVoxelComplex().

◆ smartCH() [1/2]

template<typename DSL , typename OutputIterator >
DSL::Vector DGtal::functions::smartCH ( const DSL & aDSL,
const typename DSL::Point & aFirstPoint,
const typename DSL::Position & aLength,
OutputIterator uIto,
OutputIterator lIto )
inline

Procedure that computes the lower and upper left hull of a DSS of first point aFirstPoint, length aLength, contained in a DSL aDSL [Roussillon 2014 : [105]].

Parameters
aDSLbounding DSL
aFirstPointfirst point of the DSS
aLength(strictly positive) length of the DSS
uItooutput iterator used to store the vertices of the upper convex hull
lItooutput iterator used to store the vertices of the lower convex hull
Returns
last direction vector, ie. the rational slope of minimal denominator
Template Parameters
DSLa model of arithmetical DSL
OutputIteratora model of output iterator

◆ smartCH() [2/2]

template<typename PointVector , typename Coordinate , typename Position , typename PositionFunctor , typename OutputIterator >
PointVector DGtal::functions::smartCH ( const PointVector & aFirstPoint,
const Coordinate & aRemainderBound,
const Position & aPositionBound,
const PointVector & aStep,
const Coordinate & aRStep,
const PointVector & aShift,
const Coordinate & aRShift,
const PositionFunctor & aPositionFunctor,
OutputIterator uIto,
OutputIterator lIto )
inline

Procedure that computes the lower and upper left hull of a DSS of first point aFirstPoint, length aPositionBound, contained in a digital straight line described by aRStep, aRShift and aRemainderBound.

Parameters
aFirstPointfirst point of the DSS
aRemainderBounddifference between the intercept mu of the bounding DSL and the remainder of the first point.
aPositionBound(strictly positive) length of the DSS
aStepfirst step of the DSL
aRStepremainder of the first step, ie. parameter \( a \) of the bounding DSL
aShiftshift vector of the DSL
aRShiftremainder of the shift vector, ie. parameter \( omega \) of the bounding DSL.
aPositionFunctorposition functor, which returns the position of any given point/vector
uItooutput iterator used to store the vertices of the upper convex hull
lItooutput iterator used to store the vertices of the lower convex hull
Returns
last direction vector, ie. the rational slope of minimal denominator of the DSS
Template Parameters
PointVectora model of 2d point/vector
Coordinatea model of integer for the coordinates of the point/vector
Positiona model of integer for locating points in the DSS
PositionFunctora model of unary functor that returns the position of a point/vector
OutputIteratora model of output iterator

Referenced by basicTest(), comparisonLeftHull(), and smartCHSubsegment().

◆ smartCHNextVertex()

template<typename Position , typename Coordinate , typename PointVector , typename OutputIterator , typename PositionFunctor , typename TruncationFunctor1 , typename TruncationFunctor2 >
bool DGtal::functions::smartCHNextVertex ( const Position & positionBound,
const Coordinate & remainderBound,
PointVector & X,
Coordinate & rX,
const PointVector & Y,
const Coordinate & rY,
PointVector & V,
Coordinate & rV,
OutputIterator ito,
const PositionFunctor & pos,
const TruncationFunctor1 & f1,
const TruncationFunctor2 & f2 )
inline

Procedure that computes the next (lower or upper) vertex of the left hull of a DSS.

Parameters
positionBoundposition of the last point of the DSS
remainderBoundremainder of the lower leaning points contained in the DSS
X(returned) last vertex of the considered side
rX(returned) remainder of X
Ylast vertex of the opposite side
rYremainder of Y
V(returned) last direction vector (unimodular with (X - Y))
rV(returned) remainder of V (not null)
itooutput iterator used to store the new vertex lying on the same side as X
posposition functor, which returns the position of any given point/vector
f1first floor function (for the vertex)
f2second floor function (for the direction vector)
Returns
'true' if the last vertex of the left hull has been reached, 'false' otherwise.
Template Parameters
Positiona model of integer for locating points in the DSS
PointVectora model of 2d point/vector
Coordinatea model of integer for the coordinates of the point/vector
OutputIteratora model of output iterator
PositionFunctora model of unary functor that returns the position of a point/vector
TruncationFunctor1a model of unary functor that implements an integer division
TruncationFunctor2a model of unary functor that implements an integer division

◆ smartCHPreviousVertex()

template<typename PointVector , typename Position , typename OutputIterator , typename TruncationFunctor1 , typename TruncationFunctor2 , typename PositionFunctor >
bool DGtal::functions::smartCHPreviousVertex ( PointVector & X,
const PointVector & Y,
PointVector & V,
const Position & aFirstPosition,
const Position & aLastPosition,
OutputIterator ito,
const PositionFunctor & pos,
const TruncationFunctor1 & f1,
const TruncationFunctor2 & f2 )
inline

Procedure that computes the previous vertex of the left hull of a DSS of main direction vector V , first upper leaning point U and first positive Bezout point L. The computation stops as soon as a computed vertex is located before aLastPosition.

Parameters
X(returned) first vertex of the left hull on the considered side
Yfirst vertex of the left hull on the opposite side
V(returned) previous direction vector
aFirstPositionposition of the first point of the subsegment
aLastPositionposition of the last point of the subsegment
itooutput iterator used to store the vertices of the left hull lying on the same side as X
posposition functor, which returns the position of any given point/vector
f1integer divisor for the direction vector update
f2integer divisor for the vertex update
Template Parameters
PointVectora model of couple of coordinates
Positiona model of integer for the position of the points
OutputIteratora model of output iterator
TruncationFunctor1a model of functor for the integer division
TruncationFunctor2a model of functor for the integer division
PositionFunctora model of functor returning the position of a point
Returns
'true' if the last vertex has been reached, 'false' otherwise

◆ square()

template<typename T >
T DGtal::functions::square ( T x)
inline

Returns the value x * x

Template Parameters
Ta type with the multiply operator.
Parameters
xany value
Returns
the value x * x

Definition at line 133 of file BasicMathFunctions.h.

134 { return x * x; }

Referenced by DGtal::functors::BallConstantPointFunction< TPoint, TScalar >::operator()(), and DGtal::functors::HatPointFunction< TPoint, TScalar >::operator()().

◆ thinningVoxelComplex()

template<typename TComplex , typename TDistanceTransform = DistanceTransformation<Z3i::Space, Z3i::DigitalSet, ExactPredicateLpSeparableMetric<Z3i::Space, 3>>>
TComplex DGtal::functions::thinningVoxelComplex ( TComplex & vc,
const std::string & skel_type_str,
const std::string & skel_select_type_str,
const std::string & tables_folder,
const int & persistence = 0,
const TDistanceTransform * distance_transform = nullptr,
const bool profile = false,
const bool verbose = false )

Definition at line 92 of file VoxelComplexThinning.h.

101{
102 if(verbose) {
103 using DGtal::trace;
104 trace.beginBlock("thin_function parameters:");
105 trace.info() << "skel_type_str: " << skel_type_str << std::endl;
106 trace.info() << "skel_select_type_str: " << skel_select_type_str << std::endl;
107 if(distance_transform) {
108 trace.info() << " -- provided distance_transform." << std::endl;
109 }
110 trace.info() << "persistence: " << persistence << std::endl;
111 trace.info() << "profile: " << profile << std::endl;
112 trace.info() << "verbose: " << verbose << std::endl;
113 trace.info() << "----------" << std::endl;
114 trace.endBlock();
115 }
116
117 // Validate input skel method and skel_select
118 const bool skel_type_str_is_valid =
119 skel_type_str == "ultimate" ||
120 skel_type_str == "end" ||
121 skel_type_str == "isthmus" ||
122 skel_type_str == "1isthmus" ||
123 skel_type_str == "isthmus1";
124 if(!skel_type_str_is_valid) {
125 throw std::runtime_error("skel_type_str is not valid: \"" + skel_type_str + "\"");
126 }
127
128 const bool skel_select_type_str_is_valid =
129 skel_select_type_str == "first" ||
130 skel_select_type_str == "random" ||
131 skel_select_type_str == "dmax";
132 if(!skel_select_type_str_is_valid) {
133 throw std::runtime_error("skel_select_type_str is not valid: \"" + skel_select_type_str + "\"");
134 }
135 // // No filesystem to check the tables folder exist. If incorrect, it will fail loading the table.
136 // const fs::path tables_folder_path{tables_folder};
137 // if(!fs::exists(tables_folder_path)) {
138 // throw std::runtime_error("tables_folder " + tables_folder_path.string() +
139 // " doesn't exist in the filesystem.\n"
140 // "tables_folder should point to the folder "
141 // "where DGtal tables are: i.e simplicity_table26_6.zlib");
142 // }
143
144 // Create a VoxelComplex from the set
146 using Complex = TComplex;
147 using ComplexCell = typename Complex::Cell;
148 using ComplexClique = typename Complex::Clique;
149 using Point = DGtal::Z3i::Point;
150
151 if(verbose) { DGtal::trace.beginBlock("load isthmus table"); }
152 boost::dynamic_bitset<> isthmus_table;
153 auto &sk = skel_type_str;
154 if(sk == "isthmus") {
155 const std::string tableIsthmus = tables_folder + "/isthmusicity_table26_6.zlib";
156 isthmus_table = *DGtal::functions::loadTable(tableIsthmus);
157 } else if(sk == "isthmus1" || sk == "1ishtmus") {
158 const std::string tableOneIsthmus = tables_folder + "/isthmusicityOne_table26_6.zlib";
159 isthmus_table = *DGtal::functions::loadTable(tableOneIsthmus);
160 }
161 if(verbose) { DGtal::trace.endBlock(); }
162
163
164 // SKEL FUNCTION:
165 // Load a look-up-table for the neighborgood of a point
166 auto pointMap =
168 std::function<bool(const Complex&, const ComplexCell&)> Skel;
169 if(sk == "ultimate") {
171 } else if(sk == "end") {
173 // else if (sk == "1is") Skel = oneIsthmus<Complex>;
174 // else if (sk == "is") Skel = skelIsthmus<Complex>;
175 } else if(sk == "isthmus1" || sk == "1ishtmus") {
176 Skel = [&isthmus_table, &pointMap](const Complex& fc,
177 const ComplexCell& c) {
178 return DGtal::functions::skelWithTable(isthmus_table, pointMap, fc, c);
179 };
180 } else if(sk == "isthmus") {
181 Skel = [&isthmus_table, &pointMap](const Complex& fc,
182 const ComplexCell& c) {
183 return DGtal::functions::skelWithTable(isthmus_table, pointMap, fc, c);
184 };
185 } else {
186 throw std::runtime_error("Invalid skel string");
187 }
188
189 // SELECT FUNCTION
190 std::function<std::pair<typename Complex::Cell, typename Complex::Data>(
191 const ComplexClique&)>
192 Select;
193
194 // profile
195 auto start = std::chrono::system_clock::now();
196
197 // If dmax is chosen, but no distance_transform is provided, create one.
198 using DT = TDistanceTransform;
199 using DTDigitalSet = typename DT::PointPredicate;
200 using DTDigitalSetDomain = typename DTDigitalSet::Domain;
201 using Metric = typename DT::SeparableMetric;
202 Metric l3;
203 auto &sel = skel_select_type_str;
204 const bool compute_distance_transform = !distance_transform && sel == "dmax";
205 DTDigitalSetDomain vc_domain = compute_distance_transform ?
206 DTDigitalSetDomain(vc.space().lowerBound(), vc.space().upperBound()) :
207 // dummy domain
208 DTDigitalSetDomain(Z3i::Point::zero, Z3i::Point::diagonal(1));
209
210 DTDigitalSet image_set = DTDigitalSet(vc_domain);
211 if(compute_distance_transform) {
212 vc.dumpVoxels(image_set);
213 }
214 // Create the distance map here (computationally expensive if not dummy).
215 DT dist_map(vc_domain, image_set, l3);
216 if(compute_distance_transform) {
217 distance_transform = &dist_map;
218 }
219
220 if(sel == "random") {
222 } else if(sel == "first") {
224 } else if(sel == "dmax") {
225 Select = [&distance_transform](const ComplexClique& clique) {
226 return selectMaxValue<TDistanceTransform, Complex>(*distance_transform, clique);
227 };
228 } else {
229 throw std::runtime_error("Invalid skel select type");
230 }
231
232 // Perform the thin/skeletonization
233 Complex vc_new(vc.space());
234 if(persistence == 0) {
235 vc_new = DGtal::functions::asymetricThinningScheme<Complex>(vc, Select, Skel, verbose);
236 } else {
238 persistence, verbose);
239 }
240
241 // profile
242 auto end = std::chrono::system_clock::now();
243 auto elapsed = std::chrono::duration_cast<std::chrono::seconds>(end - start);
244 if(profile) {
245 std::cout << "Time elapsed: " << elapsed.count() << std::endl;
246 }
247
248 return vc_new;
249}
void beginBlock(const std::string &keyword="")
std::ostream & info()
double endBlock()
KhalimskySpaceND< 3, Integer > KSpace
Definition StdDefs.h:146
Space::Point Point
Definition StdDefs.h:168
DGtal::LinearOperator< Calculus, dim, duality, dim, duality > diagonal(const DGtal::KForm< Calculus, dim, duality > &kform)
Definition DECHelpers.h:60
std::pair< typename TComplex::Cell, typename TComplex::Data > selectRandom(const typename TComplex::Clique &clique)
std::pair< typename TComplex::Cell, typename TComplex::Data > selectFirst(const typename TComplex::Clique &clique)
TComplex persistenceAsymetricThinningScheme(TComplex &vc, std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select, std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel, uint32_t persistence, bool verbose=false)
DGtal::CountedPtr< std::unordered_map< TPoint, NeighborhoodConfiguration > > mapZeroPointNeighborhoodToConfigurationMask()
bool skelEnd(const TComplex &vc, const typename TComplex::Cell &cell)
TComplex asymetricThinningScheme(TComplex &vc, std::function< std::pair< typename TComplex::Cell, typename TComplex::Data >(const typename TComplex::Clique &) > Select, std::function< bool(const TComplex &, const typename TComplex::Cell &) > Skel, bool verbose=false)
DGtal::CountedPtr< boost::dynamic_bitset<> > loadTable(const std::string &input_filename, const unsigned int known_size, const bool compressed=true)
bool skelUltimate(const TComplex &vc, const typename TComplex::Cell &cell)

References asymetricThinningScheme(), DGtal::Trace::beginBlock(), DGtal::PointVector< dim, Integer >::diagonal(), DGtal::Trace::endBlock(), DGtal::Trace::info(), loadTable(), mapZeroPointNeighborhoodToConfigurationMask(), persistenceAsymetricThinningScheme(), selectFirst(), selectMaxValue(), selectRandom(), skelEnd(), skelUltimate(), skelWithTable(), DGtal::trace, and DGtal::PointVector< dim, Integer >::zero.

◆ twoIsthmus()

template<typename TComplex >
bool DGtal::functions::twoIsthmus ( const TComplex & vc,
const typename TComplex::Cell & cell )

Check if input cell is a 2-isthmus. A voxel is a 2-isthmus if, after a thinning, its proper neighborhood is a 1-Surface isOneSurface.

See also
isOneSurface
Object::properNeighborhood
Template Parameters
TComplexVoxelComplex.
Parameters
vcinput complex.
cellapply function on input cell.
Returns
bool

Referenced by main().